These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27406591)

  • 1. Flying with eight wings: inter-sex differences in wingbeat kinematics and aerodynamics during the copulatory flight of damselflies (Ischnura elegans).
    Davidovich H; Ribak G
    Naturwissenschaften; 2016 Aug; 103(7-8):65. PubMed ID: 27406591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loaded flight in male Ischnura elegans and its relationship to copulatory flight.
    Davidovich H; Ribak G
    J Insect Physiol; 2018 Oct; 110():44-56. PubMed ID: 30176246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of side-slip flight in target pursuit: blue-tailed damselflies (Ischnura elegans) avoid body rotation while approaching a moving perch.
    Kassner Z; Ribak G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Jun; 204(6):561-577. PubMed ID: 29666930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of phase lag on the hovering flight of damselfly and dragonfly.
    Zou PY; Lai YH; Yang JT
    Phys Rev E; 2019 Dec; 100(6-1):063102. PubMed ID: 31962416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional morphology of the male caudal appendages of the damselfly Ischnura elegans (Zygoptera: Coenagrionidae).
    Willkommen J; Michels J; Gorb SN
    Arthropod Struct Dev; 2015 Jul; 44(4):289-300. PubMed ID: 25882740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamics and flow features of a damselfly in takeoff flight.
    Bode-Oke AT; Zeyghami S; Dong H
    Bioinspir Biomim; 2017 Sep; 12(5):056006. PubMed ID: 28699620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flight of the dragonflies and damselflies.
    Bomphrey RJ; Nakata T; Henningsson P; Lin HT
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight.
    Altshuler DL; Dickson WB; Vance JT; Roberts SP; Dickinson MH
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):18213-8. PubMed ID: 16330767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.
    Koehler C; Liang Z; Gaston Z; Wan H; Dong H
    J Exp Biol; 2012 Sep; 215(Pt 17):3018-27. PubMed ID: 22660780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Birds invest wingbeats to keep a steady head and reap the ultimate benefits of flying together.
    Taylor LA; Taylor GK; Lambert B; Walker JA; Biro D; Portugal SJ
    PLoS Biol; 2019 Jun; 17(6):e3000299. PubMed ID: 31211769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.
    Vance JT; Altshuler DL; Dickson WB; Dickinson MH; Roberts SP
    Physiol Biochem Zool; 2014; 87(6):870-81. PubMed ID: 25461650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
    Wu P; Stanford BK; Sällström E; Ukeiley L; Ifju PG
    Bioinspir Biomim; 2011 Mar; 6(1):016009. PubMed ID: 21339627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming under seminatural outdoor conditions in the larval stage negatively affects insect flight performance.
    Tüzün N; Op de Beeck L; Oliarinony R; Van Dievel M; Stoks R
    Biol Lett; 2018 May; 14(5):. PubMed ID: 29720445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between wingbeat frequency and resonant frequency of the wing in insects.
    Ha NS; Truong QT; Goo NS; Park HC
    Bioinspir Biomim; 2013 Dec; 8(4):046008. PubMed ID: 24166827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.