These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 27406840)
1. N-(2-Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator. Montbarbon E; Sguerra F; Bertrand GH; Magnier É; Coulon R; Pansu RB; Hamel M Chemistry; 2016 Aug; 22(34):12074-80. PubMed ID: 27406840 [TBL] [Abstract][Full Text] [Related]
2. Neutron-gamma discrimination with UGAB scintillator using zero-crossing method. Divani-Vais N; Bayat E; Firoozabadi MM; Ghal-Eh N Radiat Prot Dosimetry; 2013; 154(3):381-4. PubMed ID: 23019595 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a 6Li-loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection. Bass CD; Beise EJ; Breuer H; Heimbach CR; Langford TJ; Nico JS Appl Radiat Isot; 2013 Jul; 77():130-8. PubMed ID: 23608597 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of a Liquid Scintillator based on 7-Diethylamino-4-Methylcoumarin for Radiation Detection. Min SJ; Park YD; Yoon SK; Lee CH; Seo BK; Cheong JH; Roh C; Hong SB J Fluoresc; 2023 Sep; 33(5):1705-1716. PubMed ID: 36826726 [TBL] [Abstract][Full Text] [Related]
5. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus. Giacomelli L; Conroy S; Gorini G; Horton L; Murari A; Popovichev S; Syme DB; Rev Sci Instrum; 2014 Feb; 85(2):023505. PubMed ID: 24593359 [TBL] [Abstract][Full Text] [Related]
6. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine. Wakabayashi G; Nohtomi A; Yahiro E; Fujibuchi T; Fukunaga J; Umezu Y; Nakamura Y; Nakamura K; Hosono M; Itoh T Radiol Phys Technol; 2015 Jan; 8(1):125-34. PubMed ID: 25404493 [TBL] [Abstract][Full Text] [Related]
7. Gallium oxide (Ga2O3) energy dependent scintillation response to fast neutrons and flash gamma-rays. Valdes DJ; Miller S; Leak C; Haque S; Gunthoti K; Wender SA; Paneru S; Lee HY; Vogel SC; Sun KX Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39177459 [TBL] [Abstract][Full Text] [Related]
8. A scintillator-based approach to monitor secondary neutron production during proton therapy. Clarke SD; Pryser E; Wieger BM; Pozzi SA; Haelg RA; Bashkirov VA; Schulte RW Med Phys; 2016 Nov; 43(11):5915. PubMed ID: 27806590 [TBL] [Abstract][Full Text] [Related]
9. Achieving Efficient Neutron and Gamma Discrimination in a Highly Stable Wang Q; Wang C; Wang Z; Sun X; Nikl M; OuYang X; Wu Y J Phys Chem Lett; 2022 Oct; 13(39):9066-9071. PubMed ID: 36154135 [TBL] [Abstract][Full Text] [Related]
11. Designing a new type of neutron detector for neutron and gamma-ray discrimination via GEANT4. Shan Q; Chu S; Ling Y; Cai P; Jia W Appl Radiat Isot; 2016 Apr; 110():200-204. PubMed ID: 26844541 [TBL] [Abstract][Full Text] [Related]
12. Development of a small scintillation detector with an optical fiber for fast neutrons. Yagi T; Unesaki H; Misawa T; Pyeon CH; Shiroya S; Matsumoto T; Harano H Appl Radiat Isot; 2011 Feb; 69(2):539-44. PubMed ID: 21129989 [TBL] [Abstract][Full Text] [Related]
13. Towards two-dimensional brachytherapy dosimetry using plastic scintillator: new highly efficient water equivalent plastic scintillator materials. Kirov AS; Hurlbut C; Dempsey JF; Shrinivas SB; Epstein JW; Binns WR; Dowkontt PF; Williamson JF Med Phys; 1999 Aug; 26(8):1515-23. PubMed ID: 10501051 [TBL] [Abstract][Full Text] [Related]
14. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy. Ingram WS; Robertson D; Beddar S Nucl Instrum Methods Phys Res A; 2015 Mar; 776():15-20. PubMed ID: 25705066 [TBL] [Abstract][Full Text] [Related]
15. Towards the enhancement of the photon/neutron discrimination of C6D6 detectors in the range from 1 to 10 MeV using liquid scintillator materials doped with high-Z elements. Gonçalves IF; Salgado J; Távora LM; Vaz P Radiat Prot Dosimetry; 2005; 115(1-4):394-7. PubMed ID: 16381753 [TBL] [Abstract][Full Text] [Related]
16. Experimental examination of a method to estimate temporal effect by neutrons and γ-rays on scintillation light in scintillator-based soft x-ray diagnostic of experimental advanced superconducting tokamak and large helical device. Bando T; Ohdachi S; Zhou RJ; Zhong GQ; Yuan Y; Hu LQ; Ling BL Rev Sci Instrum; 2019 Jan; 90(1):013507. PubMed ID: 30709180 [TBL] [Abstract][Full Text] [Related]
17. Lithium-gadolinium-borate as a neutron dosemeter. Lewis DV; Spyrou NM; Williams AM; Beeley PA Radiat Prot Dosimetry; 2007; 126(1-4):390-3. PubMed ID: 17578875 [TBL] [Abstract][Full Text] [Related]
18. A Monte Carlo study of the effect of coded-aperture material and thickness on neutron imaging. Hayes SC; Gamage KA Radiat Prot Dosimetry; 2014 Oct; 161(1-4):265-8. PubMed ID: 24262926 [TBL] [Abstract][Full Text] [Related]
19. Potential application of fabricated sulfide-based scintillation materials for radiation detection. Im HJ; Pawel MD; Brown SS; Dai S J Nanosci Nanotechnol; 2010 Jan; 10(1):170-4. PubMed ID: 20352828 [TBL] [Abstract][Full Text] [Related]
20. The analysis of complex mixed-radiation fields using near real-time imaging. Beaumont J; Mellor MP; Joyce MJ Radiat Prot Dosimetry; 2014 Oct; 161(1-4):331-4. PubMed ID: 24782559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]