BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27406890)

  • 1. Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli.
    Gu P; Su T; Wang Q; Liang Q; Qi Q
    Sci Rep; 2016 Jul; 6():29745. PubMed ID: 27406890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel technologies combined with traditional metabolic engineering strategies facilitate the construction of shikimate-producing Escherichia coli.
    Gu P; Fan X; Liang Q; Qi Q; Li Q
    Microb Cell Fact; 2017 Sep; 16(1):167. PubMed ID: 28962609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol.
    Lee MY; Hung WP; Tsai SH
    World J Microbiol Biotechnol; 2017 Feb; 33(2):25. PubMed ID: 28044275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF.
    Rodriguez A; Martínez JA; Báez-Viveros JL; Flores N; Hernández-Chávez G; Ramírez OT; Gosset G; Bolivar F
    Microb Cell Fact; 2013 Sep; 12():86. PubMed ID: 24079972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates.
    Kim BG; Jung WD; Mok H; Ahn JH
    Microb Cell Fact; 2013 Feb; 12():15. PubMed ID: 23383718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.
    Escalante A; Calderón R; Valdivia A; de Anda R; Hernández G; Ramírez OT; Gosset G; Bolívar F
    Microb Cell Fact; 2010 Apr; 9():21. PubMed ID: 20385022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli.
    Chen K; Dou J; Tang S; Yang Y; Wang H; Fang H; Zhou C
    Bioresour Technol; 2012 Sep; 119():141-7. PubMed ID: 22728194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
    Kogure T; Kubota T; Suda M; Hiraga K; Inui M
    Metab Eng; 2016 Nov; 38():204-216. PubMed ID: 27553883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reassessment of the relationship between aroK- and aroL-encoded shikimate kinase enzymes of Escherichia coli.
    Whipp MJ; Pittard AJ
    J Bacteriol; 1995 Mar; 177(6):1627-9. PubMed ID: 7883721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial cell factory design for shikimate production in Escherichia coli.
    Lee HN; Seo SY; Kim HJ; Park JH; Park E; Choi SS; Lee SJ; Kim ES
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34227672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mecillinam resistance in Escherichia coli is conferred by loss of a second activity of the AroK protein.
    Vinella D; Gagny B; Joseleau-Petit D; D'Ari R; Cashel M
    J Bacteriol; 1996 Jul; 178(13):3818-28. PubMed ID: 8682786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY; Ling C; Zhang YY; Huang J; Liu JZ
    Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant AroL-Catalyzed Phosphorylation for the Efficient Synthesis of Shikimic Acid 3-Phosphate.
    Schoenenberger B; Wszolek A; Meier R; Brundiek H; Obkircher M; Wohlgemuth R
    Biotechnol J; 2018 Aug; 13(8):e1700529. PubMed ID: 29697210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the production of shikimic acid using the aroK knockout strain of Bacillus megaterium.
    Ghosh S; Mohan U; Banerjee UC
    World J Microbiol Biotechnol; 2016 Aug; 32(8):127. PubMed ID: 27339308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering].
    Li M; Chen X; Zhou L; Shen W; Fan Y; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2013 Jan; 29(1):56-67. PubMed ID: 23631118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol.
    Liu X; Lin J; Hu H; Zhou B; Zhu B
    World J Microbiol Biotechnol; 2014 Sep; 30(9):2543-50. PubMed ID: 24894540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the specific regulation of the shikimate pathway for tyrosine accumulation in Bacillus licheniformis.
    Xu Y; Li Y; Zhang L; Ding Z; Gu Z; Shi G
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1047-1059. PubMed ID: 31297713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro.
    Ding D; Liu Y; Xu Y; Zheng P; Li H; Zhang D; Sun J
    Sci Rep; 2016 Aug; 6():32208. PubMed ID: 27558633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.