These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27406946)

  • 1. An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme.
    Schneider CR; Shafaat HS
    Chem Commun (Camb); 2016 Aug; 52(64):9889-92. PubMed ID: 27406946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrite Reductase Activity in Engineered Azurin Variants.
    Berry SM; Strange JN; Bladholm EL; Khatiwada B; Hedstrom CG; Sauer AM
    Inorg Chem; 2016 May; 55(9):4233-47. PubMed ID: 27055058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A photoactive semisynthetic metalloenzyme exhibits complete selectivity for CO
    Schneider CR; Manesis AC; Stevenson MJ; Shafaat HS
    Chem Commun (Camb); 2018 May; 54(37):4681-4684. PubMed ID: 29675518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase.
    Manesis AC; Shafaat HS
    Inorg Chem; 2015 Aug; 54(16):7959-67. PubMed ID: 26234790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
    Zhuravleva AV; Korzhnev DM; Kupce E; Arseniev AS; Billeter M; Orekhov VY
    J Mol Biol; 2004 Oct; 342(5):1599-611. PubMed ID: 15364584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution structural studies of mutants provide insights into catalysis and electron transfer processes in copper nitrite reductase.
    Hough MA; Ellis MJ; Antonyuk S; Strange RW; Sawers G; Eady RR; Samar Hasnain S
    J Mol Biol; 2005 Jul; 350(2):300-9. PubMed ID: 15927201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae, the electron donor of cytochrome c peroxidase.
    Nóbrega CS; Saraiva IH; Carreira C; Devreese B; Matzapetakis M; Pauleta SR
    Biochim Biophys Acta; 2016 Feb; 1857(2):169-176. PubMed ID: 26589091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between Neisseria gonorrhoeae bacterial peroxidase and its electron donor, the lipid-modified azurin.
    Nóbrega CS; Pauleta SR
    FEBS Lett; 2018 May; 592(9):1473-1483. PubMed ID: 29665008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of an electron transfer complex between aromatic amine dehydrogenase and azurin from Alcaligenes faecalis.
    Sukumar N; Chen ZW; Ferrari D; Merli A; Rossi GL; Bellamy HD; Chistoserdov A; Davidson VL; Mathews FS
    Biochemistry; 2006 Nov; 45(45):13500-10. PubMed ID: 17087503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer from quinohemoprotein alcohol dehydrogenase to blue copper protein azurin in the alcohol oxidase respiratory chain of Pseudomonas putida HK5.
    Matsushita K; Yamashita T; Aoki N; Toyama H; Adachi O
    Biochemistry; 1999 May; 38(19):6111-8. PubMed ID: 10320337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron tunneling in rhenium-modified Pseudomonas aeruginosa azurins.
    Miller JE; Di Bilio AJ; Wehbi WA; Green MT; Museth AK; Richards JR; Winkler JR; Gray HB
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):59-63. PubMed ID: 15100017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution.
    Martinolich AJ; Park G; Nakamoto MY; Gate RE; Wheeler KE
    Environ Sci Technol; 2012 Jun; 46(11):6355-62. PubMed ID: 22563882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron donation between copper containing nitrite reductases and cupredoxins: the nature of protein-protein interaction in complex formation.
    Murphy LM; Dodd FE; Yousafzai FK; Eady RR; Hasnain SS
    J Mol Biol; 2002 Jan; 315(4):859-71. PubMed ID: 11812153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-coupled electron hopping in Ru-modified P. aeruginosa azurin.
    Warren JJ; Shafaat OS; Winkler JR; Gray HB
    J Biol Inorg Chem; 2016 Mar; 21(1):113-9. PubMed ID: 26790882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.
    Giannotti MI; Cabeza de Vaca I; Artés JM; Sanz F; Guallar V; Gorostiza P
    J Phys Chem B; 2015 Sep; 119(36):12050-8. PubMed ID: 26305718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of noncoupled dinuclear copper centers in azurin.
    Berry SM; Mayers JR; Zehm NA
    J Biol Inorg Chem; 2009 Jan; 14(1):143-9. PubMed ID: 18830721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction potential variations in azurin through secondary coordination sphere phenylalanine incorporations.
    Berry SM; Baker MH; Reardon NJ
    J Inorg Biochem; 2010 Oct; 104(10):1071-8. PubMed ID: 20615551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray analysis and spectroscopic characterization of M121Q azurin. A copper site model for stellacyanin.
    Romero A; Hoitink CW; Nar H; Huber R; Messerschmidt A; Canters GW
    J Mol Biol; 1993 Feb; 229(4):1007-21. PubMed ID: 8383207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photogeneration and Quenching of Tryptophan Radical in Azurin.
    Larson BC; Pomponio JR; Shafaat HS; Kim RH; Leigh BS; Tauber MJ; Kim JE
    J Phys Chem B; 2015 Jul; 119(29):9438-49. PubMed ID: 25625660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical investigation of the electron transfer protein azurin-gold nanoparticle system.
    Delfino I; Cannistraro S
    Biophys Chem; 2009 Jan; 139(1):1-7. PubMed ID: 18938024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.