These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27407020)

  • 1. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic.
    Schoonen L; Nolte RJ; van Hest JC
    Nanoscale; 2016 Aug; 8(30):14467-72. PubMed ID: 27407020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of CCMV Nanocages for Enzyme Encapsulation.
    Schoonen L; van Hest JCM
    Methods Mol Biol; 2018; 1798():69-83. PubMed ID: 29868952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCMV-Based Enzymatic Nanoreactors.
    de Ruiter MV; Putri RM; Cornelissen JJLM
    Methods Mol Biol; 2018; 1776():237-247. PubMed ID: 29869246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled encapsulation of multiple proteins in virus capsids.
    Minten IJ; Hendriks LJ; Nolte RJ; Cornelissen JJ
    J Am Chem Soc; 2009 Dec; 131(49):17771-3. PubMed ID: 19995072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoreactors via Encapsulation of Catalytic Gold Nanoparticles within Cowpea Chlorotic Mottle Virus Protein Cages.
    Liu A; de Ruiter MV; Maassen SJ; Cornelissen JJLM
    Methods Mol Biol; 2018; 1798():1-9. PubMed ID: 29868947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular, Bioorthogonal Strategy for the Controlled Loading of Cargo into a Protein Nanocage.
    Schoonen L; Eising S; van Eldijk MB; Bresseleers J; van der Pijl M; Nolte RJM; Bonger KM; van Hest JCM
    Bioconjug Chem; 2018 Apr; 29(4):1186-1193. PubMed ID: 29406698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex assembly behavior during the encapsulation of green fluorescent protein analogs in virus derived protein capsules.
    Minten IJ; Nolte RJ; Cornelissen JJ
    Macromol Biosci; 2010 May; 10(5):539-45. PubMed ID: 20491131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sortase A-Mediated N-Terminal Modification of Cowpea Chlorotic Mottle Virus for Highly Efficient Cargo Loading.
    Schoonen L; Pille J; Borrmann A; Nolte RJ; van Hest JC
    Bioconjug Chem; 2015 Dec; 26(12):2429-34. PubMed ID: 26505648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly secretory expression of recombinant cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and in-vitro encapsulation of ruthenium nanoparticles for catalysis.
    Zhu J; Yang K; Liu A; Lu X; Yang L; Zhao Q
    Protein Expr Purif; 2020 Oct; 174():105679. PubMed ID: 32534017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembling Enzymatic Cascade Pathways inside Virus-Based Nanocages Using Dual-Tasking Nucleic Acid Tags.
    Brasch M; Putri RM; de Ruiter MV; Luque D; Koay MS; Castón JR; Cornelissen JJ
    J Am Chem Soc; 2017 Feb; 139(4):1512-1519. PubMed ID: 28055188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemotherapy pro-drug activation by biocatalytic virus-like nanoparticles containing cytochrome P450.
    Sánchez-Sánchez L; Cadena-Nava RD; Palomares LA; Ruiz-Garcia J; Koay MS; Cornelissen JJ; Vazquez-Duhalt R
    Enzyme Microb Technol; 2014 Jun; 60():24-31. PubMed ID: 24835096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient strategy for the heterologous expression and purification of soluble Cowpea chlorotic mottle virus capsid protein and in vitro pH-dependent assembly of virus-like particles.
    Díaz-Valle A; García-Salcedo YM; Chávez-Calvillo G; Silva-Rosales L; Carrillo-Tripp M
    J Virol Methods; 2015 Dec; 225():23-9. PubMed ID: 26342905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural transitions in Cowpea chlorotic mottle virus (CCMV).
    Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T
    Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of a Virus-Like Particle and Its Application as a Nanoreactor at Physiological Conditions.
    Schoonen L; Maassen S; Nolte RJM; van Hest JCM
    Biomacromolecules; 2017 Nov; 18(11):3492-3497. PubMed ID: 28631927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-functionalized polymer brush films on the inner wall of silicon-glass microreactors with tunable biocatalytic activity.
    Costantini F; Benetti EM; Reinhoudt DN; Huskens J; Vancso GJ; Verboom W
    Lab Chip; 2010 Dec; 10(24):3407-12. PubMed ID: 20941436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase active site covalent anchoring of Rh(NHC) catalysts: towards chemoselective artificial metalloenzymes.
    Basauri-Molina M; Riemersma CF; Würdemann MA; Kleijn H; Klein Gebbink RJ
    Chem Commun (Camb); 2015 Apr; 51(31):6792-5. PubMed ID: 25786894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting fluorescent polymers to probe the self-assembly of virus-like particles.
    Cadena-Nava RD; Hu Y; Garmann RF; Ng B; Zelikin AN; Knobler CM; Gelbart WM
    J Phys Chem B; 2011 Mar; 115(10):2386-91. PubMed ID: 21338131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reusable biocatalytic crosslinked microparticles self-assembled from enzyme-nanoparticle complexes.
    Jeong Y; Duncan B; Park MH; Kim C; Rotello VM
    Chem Commun (Camb); 2011 Nov; 47(44):12077-9. PubMed ID: 21998820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dodecenyl succinylated alginate as a novel material for encapsulation and hyperactivation of lipases.
    Falkeborg M; Paitaid P; Shu AN; Pérez B; Guo Z
    Carbohydr Polym; 2015 Nov; 133():194-202. PubMed ID: 26344272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.