These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27407107)

  • 1. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system.
    Singh AK; Carette X; Potluri LP; Sharp JD; Xu R; Prisic S; Husson RN
    Nucleic Acids Res; 2016 Oct; 44(18):e143. PubMed ID: 27407107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the CRISPRi system to repress sepF expression in Mycobacterium smegmatis.
    Xiao J; Jia H; Pan L; Li Z; Lv L; Du B; Zhang L; Du F; Huang Y; Cao T; Sun Q; Wei R; Xing A; Zhang Z
    Infect Genet Evol; 2019 Aug; 72():183-190. PubMed ID: 31242975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis.
    Huang Q; Luo H; Liu M; Zeng J; Abdalla AE; Duan X; Li Q; Xie J
    Infect Genet Evol; 2016 Jun; 40():295-301. PubMed ID: 26498723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene silencing by CRISPR interference in mycobacteria.
    Choudhary E; Thakur P; Pareek M; Agarwal N
    Nat Commun; 2015 Feb; 6():6267. PubMed ID: 25711368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of essential mycobacterial genes.
    de Wet TJ; Winkler KR; Mhlanga M; Mizrahi V; Warner DF
    Elife; 2020 Nov; 9():. PubMed ID: 33155979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR interference identifies vulnerable cellular pathways with bactericidal phenotypes in Mycobacterium tuberculosis.
    McNeil MB; Keighley LM; Cook JR; Cheung CY; Cook GM
    Mol Microbiol; 2021 Oct; 116(4):1033-1043. PubMed ID: 34346123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in
    McNeil MB; Cook GM
    Antimicrob Agents Chemother; 2019 Aug; 63(8):. PubMed ID: 31160289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis.
    Bosch B; DeJesus MA; Poulton NC; Zhang W; Engelhart CA; Zaveri A; Lavalette S; Ruecker N; Trujillo C; Wallach JB; Li S; Ehrt S; Chait BT; Schnappinger D; Rock JM
    Cell; 2021 Aug; 184(17):4579-4592.e24. PubMed ID: 34297925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex.
    Botelho A; Canto A; Leão C; Cunha MV
    Methods Mol Biol; 2015; 1247():373-89. PubMed ID: 25399110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustured regularly interspersed short palindromic repeats (CRISPR) genetic diversity studies as a mean to reconstruct the evolution of the Mycobacterium tuberculosis complex.
    Sola C
    Tuberculosis (Edinb); 2015 Jun; 95 Suppl 1():S159-66. PubMed ID: 25748060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line.
    Yang M; Zhang L; Stevens J; Gibson G
    Bone; 2014 Dec; 69():118-25. PubMed ID: 25260929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
    Peng J; Zhou Y; Zhu S; Wei W
    FEBS J; 2015 Jun; 282(11):2089-96. PubMed ID: 25731961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in
    Yan MY; Zheng D; Li SS; Ding XY; Wang CL; Guo XP; Zhan L; Jin Q; Yang J; Sun YC
    Sci Adv; 2022 Nov; 8(47):eadd5907. PubMed ID: 36417506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and purification of immunologically reactive DPPD, a recombinant Mycobacterium tuberculosis skin test antigen, using Mycobacterium smegmatis and Escherichia coli host cells.
    Liu C; Flamoe E; Chen HJ; Carter D; Reed SG; Campos-Neto A
    Can J Microbiol; 2004 Feb; 50(2):97-105. PubMed ID: 15052311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome engineering using CRISPR-Cas9 system.
    Cong L; Zhang F
    Methods Mol Biol; 2015; 1239():197-217. PubMed ID: 25408407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the initiator tRNA genes from a slow- and a fast-growing Mycobacterium.
    Dastur A; Kumar P; Ramesh S; Vasanthakrishna M; Varshney U
    Arch Microbiol; 2002 Oct; 178(4):288-96. PubMed ID: 12209262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomic structures of Mycobacterium CRISPR-Cas.
    He L; Fan X; Xie J
    J Cell Biochem; 2012 Jul; 113(7):2464-73. PubMed ID: 22396173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of CRISPR interference to investigate the contribution of genes to pathogenesis in a macrophage model of Mycobacterium tuberculosis infection.
    Cheung CY; McNeil MB; Cook GM
    J Antimicrob Chemother; 2022 Feb; 77(3):615-619. PubMed ID: 34850009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.