These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27407107)

  • 21. CRISPR-Cas9-based photoactivatable transcription system.
    Nihongaki Y; Yamamoto S; Kawano F; Suzuki H; Sato M
    Chem Biol; 2015 Feb; 22(2):169-74. PubMed ID: 25619936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference.
    Barrangou R; Birmingham A; Wiemann S; Beijersbergen RL; Hornung V; Smith Av
    Nucleic Acids Res; 2015 Apr; 43(7):3407-19. PubMed ID: 25800748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.
    Sugano SS; Shirakawa M; Takagi J; Matsuda Y; Shimada T; Hara-Nishimura I; Kohchi T
    Plant Cell Physiol; 2014 Mar; 55(3):475-81. PubMed ID: 24443494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis.
    Converse SE; Cox JS
    J Bacteriol; 2005 Feb; 187(4):1238-45. PubMed ID: 15687187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9.
    Abrahimi P; Chang WG; Kluger MS; Qyang Y; Tellides G; Saltzman WM; Pober JS
    Circ Res; 2015 Jul; 117(2):121-8. PubMed ID: 25940550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPRbuilder-TB: "CRISPR-builder for tuberculosis". Exhaustive reconstruction of the CRISPR locus in mycobacterium tuberculosis complex using SRA.
    Guyeux C; Sola C; Noûs C; Refrégier G
    PLoS Comput Biol; 2021 Mar; 17(3):e1008500. PubMed ID: 33667225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria.
    Grenier F; Lucier JF; Rodrigue S
    Methods Mol Biol; 2015; 1334():233-44. PubMed ID: 26404154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs.
    Mandegar MA; Huebsch N; Frolov EB; Shin E; Truong A; Olvera MP; Chan AH; Miyaoka Y; Holmes K; Spencer CI; Judge LM; Gordon DE; Eskildsen TV; Villalta JE; Horlbeck MA; Gilbert LA; Krogan NJ; Sheikh SP; Weissman JS; Qi LS; So PL; Conklin BR
    Cell Stem Cell; 2016 Apr; 18(4):541-53. PubMed ID: 26971820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis.
    Shi Z; Wang F; Cui Y; Liu Z; Guo X; Zhang Y; Deng Y; Zhao H; Chen Y
    FASEB J; 2015 Dec; 29(12):4914-23. PubMed ID: 26268927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene.
    Luo Y; Zhu D; Zhang Z; Chen Y; Sun X
    Biomed Res Int; 2015; 2015():514709. PubMed ID: 25918715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An rmlA gene encoding d-glucose-1-phosphate thymidylyltransferase is essential for mycobacterial growth.
    Qu H; Xin Y; Dong X; Ma Y
    FEMS Microbiol Lett; 2007 Oct; 275(2):237-43. PubMed ID: 17784859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of temperature-sensitive plasmids in mycobacteria.
    Portevin D; Malaga W; Guilhot C
    Methods Mol Biol; 2009; 465():229-42. PubMed ID: 20560074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods.
    Jo YI; Suresh B; Kim H; Ramakrishna S
    Biochim Biophys Acta; 2015 Dec; 1856(2):234-43. PubMed ID: 26434948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.
    Matsunaga T; Yamashita JK
    Biochem Biophys Res Commun; 2014 Feb; 444(2):158-63. PubMed ID: 24462858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.
    Bao Z; Xiao H; Liang J; Zhang L; Xiong X; Sun N; Si T; Zhao H
    ACS Synth Biol; 2015 May; 4(5):585-94. PubMed ID: 25207793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.
    Kaulich M; Lee YJ; Lönn P; Springer AD; Meade BR; Dowdy SF
    Nucleic Acids Res; 2015 Apr; 43(7):e45. PubMed ID: 25586224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.