BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 27407289)

  • 1. Diverse Metabolic Capacities of Fungi for Bioremediation.
    Deshmukh R; Khardenavis AA; Purohit HJ
    Indian J Microbiol; 2016 Sep; 56(3):247-64. PubMed ID: 27407289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting fungi in bioremediation for cleaning-up emerging pollutants in aquatic ecosystems.
    AbuQamar SF; Abd El-Fattah HI; Nader MM; Zaghloul RA; Abd El-Mageed TA; Selim S; Omar BA; Mosa WF; Saad AM; El-Tarabily KA; El-Saadony MT
    Mar Environ Res; 2023 Sep; 190():106068. PubMed ID: 37421706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Laccases and Hemeproteins Systems in Bioremediation of Organic Pollutants.
    Lopes JM; Marques-da-Silva D; Videira PQ; Lagoa RL
    Curr Protein Pept Sci; 2022; 23(6):402-423. PubMed ID: 35794739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review.
    Torres-Farradá G; Thijs S; Rineau F; Guerra G; Vangronsveld J
    J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].
    Martín Moreno C; González Becerra A; Blanco Santos MJ
    Rev Iberoam Micol; 2004 Sep; 21(3):103-20. PubMed ID: 15709784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal laccases and their applications in bioremediation.
    Viswanath B; Rajesh B; Janardhan A; Kumar AP; Narasimha G
    Enzyme Res; 2014; 2014():163242. PubMed ID: 24959348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants.
    Zhuo R; Fan F
    Sci Total Environ; 2021 Jul; 778():146132. PubMed ID: 33714829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of Ligninolytic Enzymes and Their Genes in Strains of the Genus
    Torres-Farradá G; Manzano León AM; Rineau F; Ledo Alonso LL; Sánchez-López MI; Thijs S; Colpaert J; Ramos-Leal M; Guerra G; Vangronsveld J
    Front Microbiol; 2017; 8():898. PubMed ID: 28588565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode of Action, Properties, Production, and Application of Laccase: A Review.
    Patel N; Shahane S; Shivam ; Majumdar R; Mishra U
    Recent Pat Biotechnol; 2019; 13(1):19-32. PubMed ID: 30147019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry.
    Zofair SFF; Ahmad S; Hashmi MA; Khan SH; Khan MA; Younus H
    J Environ Manage; 2022 May; 309():114676. PubMed ID: 35151142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidoreductases for the remediation of organic pollutants in water - a critical review.
    Alneyadi AH; Rauf MA; Ashraf SS
    Crit Rev Biotechnol; 2018 Nov; 38(7):971-988. PubMed ID: 29385838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi.
    Raghukumar C; D'Souza-Ticlo D; Verma AK
    Crit Rev Microbiol; 2008; 34(3-4):189-206. PubMed ID: 19003603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of bacterial laccases and their application in bioremediation of industrial wastes.
    Chandra R; Chowdhary P
    Environ Sci Process Impacts; 2015 Feb; 17(2):326-42. PubMed ID: 25590782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Industrial and biotechnological applications of laccases: a review.
    Rodríguez Couto S; Toca Herrera JL
    Biotechnol Adv; 2006; 24(5):500-13. PubMed ID: 16716556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contemporary enzyme based technologies for bioremediation: A review.
    Sharma B; Dangi AK; Shukla P
    J Environ Manage; 2018 Mar; 210():10-22. PubMed ID: 29329004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccases for removal of recalcitrant and emerging pollutants.
    Majeau JA; Brar SK; Tyagi RD
    Bioresour Technol; 2010 Apr; 101(7):2331-50. PubMed ID: 19948398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laccase: microbial sources, production, purification, and potential biotechnological applications.
    Shraddha ; Shekher R; Sehgal S; Kamthania M; Kumar A
    Enzyme Res; 2011; 2011():217861. PubMed ID: 21755038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment.
    Bala S; Garg D; Thirumalesh BV; Sharma M; Sridhar K; Inbaraj BS; Tripathi M
    Toxics; 2022 Aug; 10(8):. PubMed ID: 36006163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of bioremediation by white-rot fungi.
    Pointing SB
    Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):20-33. PubMed ID: 11693920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems.
    Bilal M; Iqbal HMN; Barceló D
    Sci Total Environ; 2019 Dec; 695():133896. PubMed ID: 31756868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.