These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Discordancy Partitioning for Validating Potentially Inconsistent Pharmacogenomic Studies. Rao JS; Liu H Sci Rep; 2017 Nov; 7(1):15169. PubMed ID: 29123200 [TBL] [Abstract][Full Text] [Related]
8. False-negative errors in next-generation sequencing contribute substantially to inconsistency of mutation databases. Kim YH; Song Y; Kim JK; Kim TM; Sim HW; Kim HL; Jang H; Kim YW; Hong KM PLoS One; 2019; 14(9):e0222535. PubMed ID: 31513681 [TBL] [Abstract][Full Text] [Related]
9. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data. Nguyen L; Dang CC; Ballester PJ F1000Res; 2016; 5():. PubMed ID: 28299173 [No Abstract] [Full Text] [Related]
10. Ensembled machine learning framework for drug sensitivity prediction. Sharma A; Rani R IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480 [TBL] [Abstract][Full Text] [Related]
11. Stepwise group sparse regression (SGSR): gene-set-based pharmacogenomic predictive models with stepwise selection of functional priors. Jang IS; Dienstmann R; Margolin AA; Guinney J Pac Symp Biocomput; 2015; 20():32-43. PubMed ID: 25592566 [TBL] [Abstract][Full Text] [Related]
12. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. Rajapakse VN; Luna A; Yamade M; Loman L; Varma S; Sunshine M; Iorio F; Sousa FG; Elloumi F; Aladjem MI; Thomas A; Sander C; Kohn KW; Benes CH; Garnett M; Reinhold WC; Pommier Y iScience; 2018 Dec; 10():247-264. PubMed ID: 30553813 [TBL] [Abstract][Full Text] [Related]
13. A Methodological Framework to Discover Pharmacogenomic Interactions Based on Random Forests. Fasola S; Cilluffo G; Montalbano L; Malizia V; Ferrante G; La Grutta S Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34207374 [TBL] [Abstract][Full Text] [Related]
14. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines. Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344 [TBL] [Abstract][Full Text] [Related]
15. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response. Shahzad M; Tahir MA; Alhussein M; Mobin A; Shams Malick RA; Anwar MS Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370938 [TBL] [Abstract][Full Text] [Related]
16. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia. Covell DG PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924 [TBL] [Abstract][Full Text] [Related]
17. Pharmacogenomic agreement between two cancer cell line data sets. ; Nature; 2015 Dec; 528(7580):84-7. PubMed ID: 26570998 [TBL] [Abstract][Full Text] [Related]
18. IPCT: Integrated Pharmacogenomic Platform of Human Cancer Cell Lines and Tissues. Shoaib M; Ansari AA; Haq F; Ahn SM Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30813377 [No Abstract] [Full Text] [Related]
19. Ranking Breast Cancer Drugs and Biomarkers Identification Using Machine Learning and Pharmacogenomics. Mehmood A; Nawab S; Jin Y; Hassan H; Kaushik AC; Wei DQ ACS Pharmacol Transl Sci; 2023 Mar; 6(3):399-409. PubMed ID: 36926455 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear mixed-effects models for modeling in vitro drug response data to determine problematic cancer cell lines. Abbas-Aghababazadeh F; Lu P; Fridley BL Sci Rep; 2019 Oct; 9(1):14421. PubMed ID: 31594982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]