These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27408686)

  • 1. Assessment of pharmacogenomic agreement.
    Safikhani Z; El-Hachem N; Quevedo R; Smirnov P; Goldenberg A; Juul Birkbak N; Mason C; Hatzis C; Shi L; Aerts HJ; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():825. PubMed ID: 27408686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting inconsistency in large pharmacogenomic studies.
    Safikhani Z; Smirnov P; Freeman M; El-Hachem N; She A; Rene Q; Goldenberg A; Birkbak NJ; Hatzis C; Shi L; Beck AH; Aerts HJWL; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():2333. PubMed ID: 28928933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.
    Pozdeyev N; Yoo M; Mackie R; Schweppe RE; Tan AC; Haugen BR
    Oncotarget; 2016 Aug; 7(32):51619-51625. PubMed ID: 27322211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the consistency of large-scale pharmacogenomic studies.
    Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R
    Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discordancy Partitioning for Validating Potentially Inconsistent Pharmacogenomic Studies.
    Rao JS; Liu H
    Sci Rep; 2017 Nov; 7(1):15169. PubMed ID: 29123200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. False-negative errors in next-generation sequencing contribute substantially to inconsistency of mutation databases.
    Kim YH; Song Y; Kim JK; Kim TM; Sim HW; Kim HL; Jang H; Kim YW; Hong KM
    PLoS One; 2019; 14(9):e0222535. PubMed ID: 31513681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data.
    Nguyen L; Dang CC; Ballester PJ
    F1000Res; 2016; 5():. PubMed ID: 28299173
    [No Abstract]   [Full Text] [Related]  

  • 10. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise group sparse regression (SGSR): gene-set-based pharmacogenomic predictive models with stepwise selection of functional priors.
    Jang IS; Dienstmann R; Margolin AA; Guinney J
    Pac Symp Biocomput; 2015; 20():32-43. PubMed ID: 25592566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines.
    Rajapakse VN; Luna A; Yamade M; Loman L; Varma S; Sunshine M; Iorio F; Sousa FG; Elloumi F; Aladjem MI; Thomas A; Sander C; Kohn KW; Benes CH; Garnett M; Reinhold WC; Pommier Y
    iScience; 2018 Dec; 10():247-264. PubMed ID: 30553813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Methodological Framework to Discover Pharmacogenomic Interactions Based on Random Forests.
    Fasola S; Cilluffo G; Montalbano L; Malizia V; Ferrante G; La Grutta S
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34207374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines.
    Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response.
    Shahzad M; Tahir MA; Alhussein M; Mobin A; Shams Malick RA; Anwar MS
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.
    Covell DG
    PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacogenomic agreement between two cancer cell line data sets.
    ;
    Nature; 2015 Dec; 528(7580):84-7. PubMed ID: 26570998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IPCT: Integrated Pharmacogenomic Platform of Human Cancer Cell Lines and Tissues.
    Shoaib M; Ansari AA; Haq F; Ahn SM
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30813377
    [No Abstract]   [Full Text] [Related]  

  • 19. Ranking Breast Cancer Drugs and Biomarkers Identification Using Machine Learning and Pharmacogenomics.
    Mehmood A; Nawab S; Jin Y; Hassan H; Kaushik AC; Wei DQ
    ACS Pharmacol Transl Sci; 2023 Mar; 6(3):399-409. PubMed ID: 36926455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear mixed-effects models for modeling in vitro drug response data to determine problematic cancer cell lines.
    Abbas-Aghababazadeh F; Lu P; Fridley BL
    Sci Rep; 2019 Oct; 9(1):14421. PubMed ID: 31594982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.