BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27408691)

  • 1. Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines.
    Robinson CM; Patel MR; Webb DJ
    F1000Res; 2016; 5():. PubMed ID: 27408691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?
    MacGillavry HD; Hoogenraad CC
    Exp Cell Res; 2015 Jul; 335(2):180-6. PubMed ID: 25746722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging advanced technologies with classical methods to uncover dendritic spine dynamics: A hot spot of synaptic plasticity.
    Maiti P; Manna J; McDonald MP
    Neurosci Res; 2015 Jul; 96():1-13. PubMed ID: 25728560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics of the excitatory synapse.
    Okabe S
    Adv Exp Med Biol; 2012; 970():131-52. PubMed ID: 22351054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines.
    Chazeau A; Garcia M; Czöndör K; Perrais D; Tessier B; Giannone G; Thoumine O
    Mol Biol Cell; 2015 Mar; 26(5):859-73. PubMed ID: 25568337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecule Tracking Photoactivated Localization Microscopy to Map Nano-Scale Structure and Dynamics in Living Spines.
    MacGillavry HD; Blanpied TA
    Curr Protoc Neurosci; 2013; 65(220):2.20.1-2.20.19. PubMed ID: 25429311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Barriers in the brain: resolving dendritic spine morphology and compartmentalization.
    Adrian M; Kusters R; Wierenga CJ; Storm C; Hoogenraad CC; Kapitein LC
    Front Neuroanat; 2014; 8():142. PubMed ID: 25538570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines.
    Bellot A; Guivernau B; Tajes M; Bosch-Morató M; Valls-Comamala V; Muñoz FJ
    Brain Res; 2014 Jul; 1573():1-16. PubMed ID: 24854120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Nanoscale Organization of F-Actin in Morphologically Distinct Dendritic Spines
    Nanguneri S; Pramod RT; Efimova N; Das D; Jose M; Svitkina T; Nair D
    eNeuro; 2019; 6(4):. PubMed ID: 31311803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I).
    Sasaki T; Oga T; Nakagaki K; Sakai K; Sumida K; Hoshino K; Miyawaki I; Saito K; Suto F; Ichinohe N
    Biochem Biophys Res Commun; 2014 Feb; 444(3):302-6. PubMed ID: 24485715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology.
    Lee SE; Kim Y; Han JK; Park H; Lee U; Na M; Jeong S; Chung C; Cestra G; Chang S
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6749-54. PubMed ID: 27226294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo.
    Ter Veer MJT; Pfeiffer T; Nägerl UV
    Methods Mol Biol; 2017; 1663():45-64. PubMed ID: 28924658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of actin cytoskeleton in dendritic spine morphogenesis.
    Sekino Y; Kojima N; Shirao T
    Neurochem Int; 2007; 51(2-4):92-104. PubMed ID: 17590478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tools and limitations to study the molecular composition of synapses by fluorescence microscopy.
    Maidorn M; Rizzoli SO; Opazo F
    Biochem J; 2016 Oct; 473(20):3385-3399. PubMed ID: 27729584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging neuronal structure dynamics using 2-photon super-resolution patterned excitation reconstruction microscopy.
    Urban BE; Xiao L; Dong B; Chen S; Kozorovitskiy Y; Zhang HF
    J Biophotonics; 2018 Mar; 11(3):. PubMed ID: 28976633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spine growth precedes synapse formation in the adult neocortex in vivo.
    Knott GW; Holtmaat A; Wilbrecht L; Welker E; Svoboda K
    Nat Neurosci; 2006 Sep; 9(9):1117-24. PubMed ID: 16892056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-Resolution Microscopy Opens New Doors to Life at the Nanoscale.
    Fuhrmann M; Gockel N; Arizono M; Dembitskaya Y; Nägerl UV; Pennacchietti F; Damenti M; Testa I; Willig KI
    J Neurosci; 2022 Nov; 42(45):8488-8497. PubMed ID: 36351828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to measure actin treadmilling rate in dendritic spines.
    Koskinen M; Bertling E; Hotulainen P
    Methods Enzymol; 2012; 505():47-58. PubMed ID: 22289447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural modulation of dendritic spines during synaptic plasticity.
    Fortin DA; Srivastava T; Soderling TR
    Neuroscientist; 2012 Aug; 18(4):326-41. PubMed ID: 21670426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic spine formation and stabilization.
    Yoshihara Y; De Roo M; Muller D
    Curr Opin Neurobiol; 2009 Apr; 19(2):146-53. PubMed ID: 19523814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.