BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 27408778)

  • 1. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.
    White PJ; Lapworth AL; An J; Wang L; McGarrah RW; Stevens RD; Ilkayeva O; George T; Muehlbauer MJ; Bain JR; Trimmer JK; Brosnan MJ; Rolph TP; Newgard CB
    Mol Metab; 2016 Jul; 5(7):538-551. PubMed ID: 27408778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary branched-chain amino acid restriction alters fuel selection and reduces triglyceride stores in hearts of Zucker fatty rats.
    McGarrah RW; Zhang GF; Christopher BA; Deleye Y; Walejko JM; Page S; Ilkayeva O; White PJ; Newgard CB
    Am J Physiol Endocrinol Metab; 2020 Feb; 318(2):E216-E223. PubMed ID: 31794262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age and muscle-type modulated role of intramyocellular lipids in the progression of insulin resistance in nondiabetic Zucker rats.
    Korach-André M; Gounarides J; Deacon R; Beil M; Sun D; Gao J; Laurent D
    Metabolism; 2005 Apr; 54(4):522-8. PubMed ID: 15798961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of supplementation with branched-chain amino acids to low-protein diets on expression of genes related to lipid metabolism in skeletal muscle of growing pigs.
    Duan Y; Duan Y; Li F; Li Y; Guo Q; Ji Y; Tan B; Li T; Yin Y
    Amino Acids; 2016 Sep; 48(9):2131-44. PubMed ID: 27156063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans.
    Glynn EL; Piner LW; Huffman KM; Slentz CA; Elliot-Penry L; AbouAssi H; White PJ; Bain JR; Muehlbauer MJ; Ilkayeva OR; Stevens RD; Porter Starr KN; Bales CW; Volpi E; Brosnan MJ; Trimmer JK; Rolph TP; Newgard CB; Kraus WE
    Diabetologia; 2015 Oct; 58(10):2324-35. PubMed ID: 26254576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin action, type 2 diabetes, and branched-chain amino acids: A two-way street.
    White PJ; McGarrah RW; Herman MA; Bain JR; Shah SH; Newgard CB
    Mol Metab; 2021 Oct; 52():101261. PubMed ID: 34044180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched-chain amino acid metabolism, insulin sensitivity and liver fat response to exercise training in sedentary dysglycaemic and normoglycaemic men.
    Lee S; Gulseth HL; Langleite TM; Norheim F; Olsen T; Refsum H; Jensen J; Birkeland KI; Drevon CA
    Diabetologia; 2021 Feb; 64(2):410-423. PubMed ID: 33123769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BCAA Supplementation in Mice with Diet-induced Obesity Alters the Metabolome Without Impairing Glucose Homeostasis.
    Lee J; Vijayakumar A; White PJ; Xu Y; Ilkayeva O; Lynch CJ; Newgard CB; Kahn BB
    Endocrinology; 2021 Jul; 162(7):. PubMed ID: 33765118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early events involved in the development of insulin resistance in Zucker fatty rat.
    Liu RH; Mizuta M; Kurose T; Matsukura S
    Int J Obes Relat Metab Disord; 2002 Mar; 26(3):318-26. PubMed ID: 11896486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism.
    Ferguson D; Eichler SJ; Yiew NKH; Colca JR; Cho K; Patti GJ; Shew TM; Lutkewitte AJ; Mukherjee S; McCommis KS; Niemi NM; Finck BN
    Mol Metab; 2023 Apr; 70():101694. PubMed ID: 36801448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation.
    Webb LA; Sadri H; von Soosten D; Dänicke S; Egert S; Stehle P; Sauerwein H
    J Dairy Sci; 2019 Apr; 102(4):3556-3568. PubMed ID: 30712942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle-Liver Trafficking of BCAA-Derived Nitrogen Underlies Obesity-Related Glycine Depletion.
    White PJ; Lapworth AL; McGarrah RW; Kwee LC; Crown SB; Ilkayeva O; An J; Carson MW; Christopher BA; Ball JR; Davies MN; Kjalarsdottir L; George T; Muehlbauer MJ; Bain JR; Stevens RD; Koves TR; Muoio DM; Brozinick JT; Gimeno RE; Brosnan MJ; Rolph TP; Kraus WE; Shah SH; Newgard CB
    Cell Rep; 2020 Nov; 33(6):108375. PubMed ID: 33176135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sympathetic reactivity associates with insulin resistance in the young Zucker rat.
    Ruggeri P; Brunori A; Cogo CE; Storace D; Di Nardo F; Burattini R
    Am J Physiol Regul Integr Comp Physiol; 2006 Aug; 291(2):R376-82. PubMed ID: 16914422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic implications of dietary trans-fatty acids.
    Dorfman SE; Laurent D; Gounarides JS; Li X; Mullarkey TL; Rocheford EC; Sari-Sarraf F; Hirsch EA; Hughes TE; Commerford SR
    Obesity (Silver Spring); 2009 Jun; 17(6):1200-7. PubMed ID: 19584878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PPARγ is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues.
    Blanchard PG; Moreira RJ; Castro É; Caron A; Côté M; Andrade ML; Oliveira TE; Ortiz-Silva M; Peixoto AS; Dias FA; Gélinas Y; Guerra-Sá R; Deshaies Y; Festuccia WT
    Metabolism; 2018 Dec; 89():27-38. PubMed ID: 30316815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BDK inhibition acts as a catabolic switch to mimic fasting and improve metabolism in mice.
    Bollinger E; Peloquin M; Libera J; Albuquerque B; Pashos E; Shipstone A; Hadjipanayis A; Sun Z; Xing G; Clasquin M; Stansfield JC; Tierney B; Gernhardt S; Siddall CP; Greizer T; Geoly FJ; Vargas SR; Gao LC; Williams G; Marshall M; Rosado A; Steppan C; Filipski KJ; Zhang BB; Miller RA; Roth Flach RJ
    Mol Metab; 2022 Dec; 66():101611. PubMed ID: 36220546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branched-chain amino acids alter cellular redox to induce lipid oxidation and reduce de novo lipogenesis in the liver.
    Surugihalli C; Muralidaran V; Ryan CE; Patel K; Zhao D; Sunny NE
    Am J Physiol Endocrinol Metab; 2023 Apr; 324(4):E299-E313. PubMed ID: 36791321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.
    Lerin C; Goldfine AB; Boes T; Liu M; Kasif S; Dreyfuss JM; De Sousa-Coelho AL; Daher G; Manoli I; Sysol JR; Isganaitis E; Jessen N; Goodyear LJ; Beebe K; Gall W; Venditti CP; Patti ME
    Mol Metab; 2016 Oct; 5(10):926-936. PubMed ID: 27689005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branched-chain amino acid catabolism in muscle affects systemic BCAA levels but not insulin resistance.
    Blair MC; Neinast MD; Jang C; Chu Q; Jung JW; Axsom J; Bornstein MR; Thorsheim C; Li K; Hoshino A; Yang S; Roth Flach RJ; Zhang BB; Rabinowitz JD; Arany Z
    Nat Metab; 2023 Apr; 5(4):589-606. PubMed ID: 37100997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.