These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 27408983)
1. Tensiometric Characterization of Superhydrophobic Surfaces As Compared to the Sessile and Bouncing Drop Methods. Hisler V; Jendoubi H; Hairaye C; Vonna L; Le Houérou V; Mermet F; Nardin M; Haidara H Langmuir; 2016 Aug; 32(31):7765-73. PubMed ID: 27408983 [TBL] [Abstract][Full Text] [Related]
2. Testing the performance of superhydrophobic aluminum surfaces. Ruiz-Cabello FJM; Ibáñez-Ibáñez PF; Gómez-Lopera JF; Martínez-Aroza J; Cabrerizo-Vílchez M; Rodríguez-Valverde MA J Colloid Interface Sci; 2017 Dec; 508():129-136. PubMed ID: 28822862 [TBL] [Abstract][Full Text] [Related]
3. Role of Trapped Air in the Attachment of Mateescu M; Knopf S; Mermet F; Lavalle P; Vonna L Langmuir; 2020 Feb; 36(5):1103-1112. PubMed ID: 31887046 [TBL] [Abstract][Full Text] [Related]
4. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
5. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces. Beitollahpoor M; Farzam M; Pesika NS J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141 [TBL] [Abstract][Full Text] [Related]
6. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces. Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378 [TBL] [Abstract][Full Text] [Related]
7. A Wettability Metric for Characterization of Capillary Flow on Textured Superhydrophilic Surfaces. Allred TP; Weibel JA; Garimella SV Langmuir; 2017 Aug; 33(32):7847-7853. PubMed ID: 28727438 [TBL] [Abstract][Full Text] [Related]
8. Femtosecond Laser Fabricated Elastomeric Superhydrophobic Surface with Stretching-Enhanced Water Repellency. Yang H; Xu K; Xu C; Fan D; Cao Y; Xue W; Pang J Nanoscale Res Lett; 2019 Oct; 14(1):333. PubMed ID: 31650340 [TBL] [Abstract][Full Text] [Related]
9. Application of the Lattice-Boltzmann method to wetting on anisotropic textured surfaces: Characterization of the liquid-solid interface. Epalle A; Catherin M; Cobian M; Valette S J Colloid Interface Sci; 2023 Dec; 652(Pt A):362-368. PubMed ID: 37574353 [TBL] [Abstract][Full Text] [Related]
10. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793 [TBL] [Abstract][Full Text] [Related]
11. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures. Quan Y; Zhang LZ Langmuir; 2014 Oct; 30(39):11640-9. PubMed ID: 25203603 [TBL] [Abstract][Full Text] [Related]
12. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Xu W; Leeladhar R; Kang YT; Choi CH Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600 [TBL] [Abstract][Full Text] [Related]
13. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact. Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867 [TBL] [Abstract][Full Text] [Related]
14. Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging. Eriksson M; Claesson PM; Järn M; Tuominen M; Wallqvist V; Schoelkopf J; Gane PAC; Swerin A Langmuir; 2019 Oct; 35(41):13275-13285. PubMed ID: 31547659 [TBL] [Abstract][Full Text] [Related]
15. Macrotextured spoked surfaces reduce the residence time of a bouncing Leidenfrost drop. Patterson CJ; Shiri S; Bird JC J Phys Condens Matter; 2017 Feb; 29(6):064007. PubMed ID: 28002051 [TBL] [Abstract][Full Text] [Related]
16. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842 [TBL] [Abstract][Full Text] [Related]
17. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS). Guan JH; Wells GG; Xu B; McHale G; Wood D; Martin J; Stuart-Cole S Langmuir; 2015 Nov; 31(43):11781-9. PubMed ID: 26446177 [TBL] [Abstract][Full Text] [Related]
18. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method. Ensikat HJ; Mayser M; Barthlott W Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578 [TBL] [Abstract][Full Text] [Related]
19. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Cha TG; Yi JW; Moon MW; Lee KR; Kim HY Langmuir; 2010 Jun; 26(11):8319-26. PubMed ID: 20151676 [TBL] [Abstract][Full Text] [Related]
20. Influence of n-hexanol and n-octanol on wetting properties and air entrapment at superhydrophobic surfaces. Krasowska M; Ferrari M; Liggieri L; Malysa K Phys Chem Chem Phys; 2011 May; 13(20):9452-7. PubMed ID: 21479322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]