These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 27408989)
21. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Zhang F; Liu M; Li Y; Che Y; Xiao Y Sci Total Environ; 2019 Mar; 655():1150-1158. PubMed ID: 30577108 [TBL] [Abstract][Full Text] [Related]
22. The phytoprotective effects of arbuscular mycorrhizal fungi on Enterolobium contorstisiliquum (Vell.) Morong in soil containing coal-mine tailings. Dos Santos ML; Soares CRFS; Comin JJ; Lovato PE Int J Phytoremediation; 2017 Dec; 19(12):1100-1108. PubMed ID: 28521508 [TBL] [Abstract][Full Text] [Related]
23. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. Babu AG; Shim J; Bang KS; Shea PJ; Oh BT J Environ Manage; 2014 Jan; 132():129-34. PubMed ID: 24291586 [TBL] [Abstract][Full Text] [Related]
24. Potential of Cassia alata L. Coupled with Biochar for Heavy Metal Stabilization in Multi-Metal Mine Tailings. Huang L; Li Y; Zhao M; Chao Y; Qiu R; Yang Y; Wang S Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29534505 [TBL] [Abstract][Full Text] [Related]
25. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Lu RR; Hu ZH; Zhang QL; Li YQ; Lin M; Wang XL; Wu XN; Yang JT; Zhang LQ; Jing YX; Peng CL Ecotoxicol Environ Saf; 2020 Oct; 203():110988. PubMed ID: 32678761 [TBL] [Abstract][Full Text] [Related]
26. Growth and lead uptake by González-Villalobos MA; Martínez-Trinidad T; Alarcón A; Plascencia-Escalante FO Int J Phytoremediation; 2021; 23(3):272-278. PubMed ID: 32853027 [TBL] [Abstract][Full Text] [Related]
27. Application of biochar on mine tailings: effects and perspectives for land reclamation. Fellet G; Marchiol L; Delle Vedove G; Peressotti A Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855 [TBL] [Abstract][Full Text] [Related]
28. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Chaturvedi R; Favas P; Pratas J; Varun M; Paul MS Ecotoxicol Environ Saf; 2018 Feb; 148():318-326. PubMed ID: 29091834 [TBL] [Abstract][Full Text] [Related]
29. Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil. Ghavri SV; Singh RP J Environ Biol; 2012 Mar; 33(2):207-14. PubMed ID: 23033682 [TBL] [Abstract][Full Text] [Related]
30. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Gil-Loaiza J; White SA; Root RA; Solís-Dominguez FA; Hammond CM; Chorover J; Maier RM Sci Total Environ; 2016 Sep; 565():451-461. PubMed ID: 27183459 [TBL] [Abstract][Full Text] [Related]
31. Phyto-Extraction of Nickel by Linum usitatissimum in Association with Glomus intraradices. Amna ; Masood S; Syed JH; Munis MF; Chaudhary HJ Int J Phytoremediation; 2015; 17(10):981-7. PubMed ID: 25763643 [TBL] [Abstract][Full Text] [Related]
32. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Chen BD; Zhu YG; Duan J; Xiao XY; Smith SE Environ Pollut; 2007 May; 147(2):374-80. PubMed ID: 16764975 [TBL] [Abstract][Full Text] [Related]
33. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Wang FY; Lin XG; Yin R Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710 [TBL] [Abstract][Full Text] [Related]
34. Immobilization effects of co-pyrolyzed neem seed mixed with poultry manure on potentially toxic elements in soil and the phytoremediation potentials of native Manihot esculenta and Jatropha curcas in ensuring sustainable land use. Mensah MK; Drebenstedt C; Ola IM; Hoth N; Damptey FG; Wiafe ED Environ Monit Assess; 2023 Jun; 195(6):793. PubMed ID: 37261537 [TBL] [Abstract][Full Text] [Related]
35. Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by Chrysopogon zizanioides (vetiver) in a substrate containing coal mine wastes. Meyer E; Londoño DM; de Armas RD; Giachini AJ; Rossi MJ; Stoffel SC; Soares CR Int J Phytoremediation; 2017 Feb; 19(2):113-120. PubMed ID: 27491701 [TBL] [Abstract][Full Text] [Related]
36. Effects of amendments and aided phytostabilization of an energy crop on the metal availability and leaching in mine tailings using a pot test. Gao B; Zhang X; Tian C; Zhang X; Liu J Environ Sci Pollut Res Int; 2020 Jan; 27(3):2745-2759. PubMed ID: 31836984 [TBL] [Abstract][Full Text] [Related]
37. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. Ruiz Olivares A; Carrillo-González R; González-Chávez Mdel C; Soto Hernández RM J Environ Manage; 2013 Jan; 114():316-23. PubMed ID: 23171605 [TBL] [Abstract][Full Text] [Related]
38. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels. Zheng S; Wang C; Shen Z; Quan Y; Liu X Int J Phytoremediation; 2015; 17(1-6):208-14. PubMed ID: 25397977 [TBL] [Abstract][Full Text] [Related]
39. Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study. Acosta JA; Abbaspour A; Martínez GR; Martínez-Martínez S; Zornoza R; Gabarrón M; Faz A Chemosphere; 2018 Aug; 204():71-78. PubMed ID: 29653324 [TBL] [Abstract][Full Text] [Related]
40. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]