These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 27409124)
21. Liquid-crystal-polymer binary diffractive optical elements with a sub-micrometer feature size realized by a contact polarization holography. Fang Q; Liu J; Yan Z; Deng Q; Pang H; Lv Y; Sun X; Chen J; Jiang H; Yin S Opt Lett; 2022 Jul; 47(13):3195-3198. PubMed ID: 35776583 [TBL] [Abstract][Full Text] [Related]
22. Holographic Formation of Non-uniform Diffraction Structures by Arbitrary Polarized Recording Beams in Liquid Crystal-photopolymer Compositions. Semkin A; Sharangovich S Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083580 [TBL] [Abstract][Full Text] [Related]
23. See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens. Lee JS; Kim YK; Won YH Opt Express; 2018 Jul; 26(15):19341-19355. PubMed ID: 30114109 [TBL] [Abstract][Full Text] [Related]
24. Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal. Xu D; Tan G; Wu ST Opt Express; 2015 May; 23(9):12274-85. PubMed ID: 25969314 [TBL] [Abstract][Full Text] [Related]
25. Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode. Keshri S; Murphy K; Toal V; Naydenova I; Martin S Appl Opt; 2018 Aug; 57(22):E163-E172. PubMed ID: 30117852 [TBL] [Abstract][Full Text] [Related]
26. Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal. Ogiwara A; Watanabe M; Moriwaki R Opt Lett; 2013 Apr; 38(7):1158-60. PubMed ID: 23546276 [TBL] [Abstract][Full Text] [Related]
27. Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings. Holmes ME; Malcuit MS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066603. PubMed ID: 12188847 [TBL] [Abstract][Full Text] [Related]
28. Comparison of mechanically ruled versus holographically varied line-spacing gratings for a soft-x-ray flat-field spectrograph. Yamazaki T; Gullikson E; Miyata N; Koike M; Harada Y; Mrowka S; Kleineberg U; Underwood JH; Yanagihara MM; Sano K Appl Opt; 1999 Jul; 38(19):4001-3. PubMed ID: 18323875 [TBL] [Abstract][Full Text] [Related]
29. Holographically formed, acoustically switchable gratings based on polymer-dispersed liquid crystals. Liu YJ; Lu M; Ding X; Leong ES; Lin SC; Shi J; Teng JH; Wang L; Bunning TJ; Huang TJ J Lab Autom; 2013 Aug; 18(4):291-5. PubMed ID: 22909448 [TBL] [Abstract][Full Text] [Related]
30. Formation of holographic polymer-dispersed liquid crystal memory by angle-multiplexing recording for optically reconfigurable gate arrays. Ogiwara A; Watanabe M Appl Opt; 2015 Dec; 54(36):10623-9. PubMed ID: 26837028 [TBL] [Abstract][Full Text] [Related]
32. Plane gratings for high-resolution grazing-incidence monochromators: holographic grating versus mechanically ruled varied-line-spacing grating. Koike M; Namioka T Appl Opt; 1997 Sep; 36(25):6308-18. PubMed ID: 18259482 [TBL] [Abstract][Full Text] [Related]
33. Temperature dependence of anisotropic diffraction in holographic polymer-dispersed liquid crystal memory. Ogiwara A; Watanabe M; Moriwaki R Appl Opt; 2013 Sep; 52(26):6529-36. PubMed ID: 24085129 [TBL] [Abstract][Full Text] [Related]
34. Finite-difference time-domain calculations of a liquid-crystal-based switchable Bragg grating. Wang B; Wang X; Bos PJ J Opt Soc Am A Opt Image Sci Vis; 2004 Jun; 21(6):1066-72. PubMed ID: 15191189 [TBL] [Abstract][Full Text] [Related]
35. Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices. d'Alessandro A; Asquini R; Gizzi C; Caputo R; Umeton C; Veltri A; Sukhov AV Opt Lett; 2004 Jun; 29(12):1405-7. PubMed ID: 15233450 [TBL] [Abstract][Full Text] [Related]
36. Shape memory of a polymer grating surface fabricated by two-beam interference lithography. Luo Y; Fang LN; Wei WH; Guan W; Dai YZ; Sun XC; Gao BR Appl Opt; 2022 Jan; 61(3):792-796. PubMed ID: 35200784 [TBL] [Abstract][Full Text] [Related]
37. Polarization-Dependent Gratings Based on Polymer-Dispersed Liquid Crystal Cells with In-Plane Switching Electrodes. Huang CY; Lin SH Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054701 [TBL] [Abstract][Full Text] [Related]
38. Electro-optical investigations of holographic-polymer-dispersed ferroelectric liquid crystals. Woltman SJ; Eakin JN; Crawford GP; Zumer S J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3789-99. PubMed ID: 18059932 [TBL] [Abstract][Full Text] [Related]
39. Sensor for monitoring the vibration of a laser beam based on holographic polymer dispersed liquid crystal films. Li MS; Wu ST; Fuh AY Opt Express; 2010 Dec; 18(25):26300-6. PubMed ID: 21164979 [TBL] [Abstract][Full Text] [Related]
40. Dual-period tunable phase grating based on a single in-plane switching. Gao L; Zheng ZZ; Zhu JL; Han WM; Sun YB Opt Lett; 2016 Aug; 41(16):3775-8. PubMed ID: 27519086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]