These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 27409195)
1. Random lasing at the edge of a TiO Zhu S; Shen Z; Jiang B; Chen X Appl Opt; 2016 Jul; 55(19):5091-4. PubMed ID: 27409195 [TBL] [Abstract][Full Text] [Related]
2. Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement. Dominguez CT; Lacroute Y; Chaumont D; Sacilotti M; de Araújo CB; Gomes AS Opt Express; 2012 Jul; 20(16):17380-5. PubMed ID: 23038290 [TBL] [Abstract][Full Text] [Related]
3. Partially disordered TiO Li W; Kuang D; Gu P; Xiang M Nanotechnology; 2020 Jan; 31(2):025711. PubMed ID: 31557752 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Photoluminescence and Random Lasing Emission in TiO Liu X; Xu C; Zhao H Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299664 [TBL] [Abstract][Full Text] [Related]
5. Coherent Random Lasing from Dye Aggregates in Polydimethylsiloxane Thin Films. Ye L; Feng Y; Cheng Z; Wang C; Lu C; Lu Y; Cui Y ACS Appl Mater Interfaces; 2017 Aug; 9(32):27232-27238. PubMed ID: 28738156 [TBL] [Abstract][Full Text] [Related]
6. Plasmon-assisted random lasing from a single-mode fiber tip. Khatri DS; Li Y; Chen J; Stocks AE; Kwizera EA; Huang X; Argyropoulos C; Hoang T Opt Express; 2020 May; 28(11):16417-16426. PubMed ID: 32549465 [TBL] [Abstract][Full Text] [Related]
7. Single mode optofluidic distributed feedback dye laser. Li Z; Zhang Z; Emery T; Scherer A; Psaltis D Opt Express; 2006 Jan; 14(2):696-701. PubMed ID: 19503387 [TBL] [Abstract][Full Text] [Related]
8. Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer. Shi LT; Jin F; Zheng ML; Dong XZ; Chen WQ; Zhao ZS; Duan XM Phys Chem Chem Phys; 2016 Feb; 18(7):5306-15. PubMed ID: 26817423 [TBL] [Abstract][Full Text] [Related]
9. Room temperature two-photon-pumped random lasers in FAPbBr Xu L; Meng Y; Xu C; Chen P RSC Adv; 2018 Oct; 8(64):36910-36914. PubMed ID: 35558947 [TBL] [Abstract][Full Text] [Related]
11. 1Low threshold random lasing in dye-doped silica nano powders. García-Revilla S; Zayac M; Balda R; Al-Saleh M; Levy D; Fernández J Opt Express; 2009 Jul; 17(15):13202-15. PubMed ID: 19654726 [TBL] [Abstract][Full Text] [Related]
12. Random Lasing at Localization Transition in a Colloidal Suspension (TiO Jiménez-Villar E; da Silva IF; Mestre V; Wetter NU; Lopez C; de Oliveira PC; Faustino WM; de Sá GF ACS Omega; 2017 Jun; 2(6):2415-2421. PubMed ID: 31457590 [TBL] [Abstract][Full Text] [Related]
13. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol. Li Y; Luo D; Chen R Appl Opt; 2016 Nov; 55(31):8864-8867. PubMed ID: 27828287 [TBL] [Abstract][Full Text] [Related]
14. Random Lasing via Plasmon-Induced Cavitation of Microbubbles. Sato R; Henzie J; Zhang B; Ishii S; Murai S; Takazawa K; Takeda Y Nano Lett; 2021 Jul; 21(14):6064-6070. PubMed ID: 34240608 [TBL] [Abstract][Full Text] [Related]
15. Single-resonator, stable dual-longitudinal-mode optofluidic microcavity laser based on a hollow-core microstructured optical fiber. Shi H; He J; Guo H; Liu X; Wang Z; Liu YG Opt Express; 2021 Mar; 29(7):10077-10088. PubMed ID: 33820142 [TBL] [Abstract][Full Text] [Related]
16. ZnO nanorods as scatterers for random lasing emission from dye doped polymer films. Zhang D; Wang Y; Ma D J Nanosci Nanotechnol; 2009 May; 9(5):3166-70. PubMed ID: 19452985 [TBL] [Abstract][Full Text] [Related]
17. Gold nanostars for random lasing enhancement. Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498 [TBL] [Abstract][Full Text] [Related]
18. Random Lasing Engineering in Poly-(9-9dioctylfluorene) Active Waveguides Deposited on Wrinkles Corrugated Surfaces. Anni M; Rhee D; Lee WK ACS Appl Mater Interfaces; 2019 Mar; 11(9):9385-9393. PubMed ID: 30732449 [TBL] [Abstract][Full Text] [Related]