BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27409245)

  • 1. Electroformation of Giant Unilamellar Vesicles: Investigating Vesicle Fusion versus Bulge Merging.
    Micheletto YM; Marques CM; Silveira NP; Schroder AP
    Langmuir; 2016 Aug; 32(32):8123-30. PubMed ID: 27409245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant unilamellar vesicle electroformation from lipid mixtures to native membranes under physiological conditions.
    Méléard P; Bagatolli LA; Pott T
    Methods Enzymol; 2009; 465():161-76. PubMed ID: 19913167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AC-electric field dependent electroformation of giant lipid vesicles.
    Politano TJ; Froude VE; Jing B; Zhu Y
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films Formed by Vesicle Fusion.
    Boban Z; Mardešić I; Jozić SP; Šumanovac J; Subczynski WK; Raguz M
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fluorescence-based Assay for Measuring Phospholipid Scramblase Activity in Giant Unilamellar Vesicles.
    Mathiassen PPM; Pomorski TG
    Bio Protoc; 2022 Mar; 12(6):e4366. PubMed ID: 35434199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films with a Focus on Vesicles with High Cholesterol Content.
    Mardešić I; Boban Z; Raguz M
    Membranes (Basel); 2024 Mar; 14(4):. PubMed ID: 38668107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroformation of phospholipid giant unilamellar vesicles in physiological phosphate buffer.
    Lefrançois P; Goudeau B; Arbault S
    Integr Biol (Camb); 2018 Jul; 10(7):429-434. PubMed ID: 29943778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of a transmembrane protein, the voltage-gated ion channel, KvAP, into giant unilamellar vesicles for microscopy and patch clamp studies.
    Garten M; Aimon S; Bassereau P; Toombes GE
    J Vis Exp; 2015 Jan; (95):52281. PubMed ID: 25650630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of giant vesicle assembly from thin lipid films.
    Pazzi J; Subramaniam AB
    J Colloid Interface Sci; 2024 May; 661():1033-1045. PubMed ID: 38335788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles.
    Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K
    Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.
    Wesołowska O; Michalak K; Maniewska J; Hendrich AB
    Acta Biochim Pol; 2009; 56(1):33-9. PubMed ID: 19287805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins.
    Aden S; Snoj T; Anderluh G
    Methods Enzymol; 2021; 649():219-251. PubMed ID: 33712188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles.
    Dolder N; Müller P; von Ballmoos C
    Soft Matter; 2022 Aug; 18(31):5877-5893. PubMed ID: 35916307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions.
    Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G
    Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QS21-Initiated Fusion of Liposomal Small Unilamellar Vesicles to Form ALFQ Results in Concentration of Most of the Monophosphoryl Lipid A, QS21, and Cholesterol in Giant Unilamellar Vesicles.
    Abucayon EG; Rao M; Matyas GR; Alving CR
    Pharmaceutics; 2023 Aug; 15(9):. PubMed ID: 37765181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids.
    Breton M; Amirkavei M; Mir LM
    J Membr Biol; 2015 Oct; 248(5):827-35. PubMed ID: 26238509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar.
    Tsumoto K; Matsuo H; Tomita M; Yoshimura T
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):98-105. PubMed ID: 18993037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.