These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27409250)

  • 21. Potential of Environmental DNA to Evaluate Northern Pike (Esox lucius) Eradication Efforts: An Experimental Test and Case Study.
    Dunker KJ; Sepulveda AJ; Massengill RL; Olsen JB; Russ OL; Wenburg JK; Antonovich A
    PLoS One; 2016; 11(9):e0162277. PubMed ID: 27626271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate.
    Mauvisseau Q; Davy-Bowker J; Bulling M; Brys R; Neyrinck S; Troth C; Sweet M
    Sci Rep; 2019 Oct; 9(1):14064. PubMed ID: 31575968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of sampling designs.
    Goldberg CS; Strickler KM; Fremier AK
    Sci Total Environ; 2018 Aug; 633():695-703. PubMed ID: 29602110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: The role of microbial nutrient limitation.
    Salter I
    PLoS One; 2018; 13(2):e0192409. PubMed ID: 29474423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving herpetological surveys in eastern North America using the environmental DNA method.
    Lacoursière-Roussel A; Dubois Y; Normandeau E; Bernatchez L
    Genome; 2016 Nov; 59(11):991-1007. PubMed ID: 27788021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating species distribution and abundance in river networks using environmental DNA.
    Carraro L; Hartikainen H; Jokela J; Bertuzzo E; Rinaldo A
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11724-11729. PubMed ID: 30373831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clearing muddied waters: Capture of environmental DNA from turbid waters.
    Williams KE; Huyvaert KP; Piaggio AJ
    PLoS One; 2017; 12(7):e0179282. PubMed ID: 28686659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the breeding phenology of a threatened frog species using eDNA and automatic acoustic monitoring.
    Chen Y; Tournayre O; Tian H; Lougheed SC
    PeerJ; 2023; 11():e14679. PubMed ID: 36710869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system.
    Song JW; Small MJ; Casman EA
    Sci Total Environ; 2017 Dec; 605-606():713-720. PubMed ID: 28675881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles.
    Davy CM; Kidd AG; Wilson CC
    PLoS One; 2015; 10(7):e0130965. PubMed ID: 26200348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analytical framework for estimating aquatic species density from environmental DNA.
    Chambert T; Pilliod DS; Goldberg CS; Doi H; Takahara T
    Ecol Evol; 2018 Mar; 8(6):3468-3477. PubMed ID: 29607039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA).
    Schultz MT; Lance RF
    PLoS One; 2015; 10(10):e0141503. PubMed ID: 26509674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Application of environmental DNA technology in natural reproduction of the four major Chinese carps in Yichang section of Yangtzi River, China].
    Li S; Liu XQ; Jiang W; Xiao K; Huang AY; Zhang Q
    Ying Yong Sheng Tai Xue Bao; 2021 Jun; 32(6):2241-2248. PubMed ID: 34212630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying spawning sites and other critical habitat in lotic systems using eDNA "snapshots": A case study using the sea lamprey
    Bracken FSA; Rooney SM; Kelly-Quinn M; King JJ; Carlsson J
    Ecol Evol; 2019 Jan; 9(1):553-567. PubMed ID: 30680136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms.
    de Souza LS; Godwin JC; Renshaw MA; Larson E
    PLoS One; 2016; 11(10):e0165273. PubMed ID: 27776150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the fate of eDNA in the environment and implications for studying biodiversity.
    Harrison JB; Sunday JM; Rogers SM
    Proc Biol Sci; 2019 Nov; 286(1915):20191409. PubMed ID: 31744434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating the Advection and Degradation of the Environmental DNA of Common Carp along a River.
    Nukazawa K; Hamasuna Y; Suzuki Y
    Environ Sci Technol; 2018 Sep; 52(18):10562-10570. PubMed ID: 30102525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental conditions influence eDNA persistence in aquatic systems.
    Barnes MA; Turner CR; Jerde CL; Renshaw MA; Chadderton WL; Lodge DM
    Environ Sci Technol; 2014; 48(3):1819-27. PubMed ID: 24422450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is the detection of aquatic environmental DNA influenced by substrate type?
    Buxton AS; Groombridge JJ; Griffiths RA
    PLoS One; 2017; 12(8):e0183371. PubMed ID: 28813525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inference of genetic marker concentrations from field surveys to detect environmental DNA using Bayesian updating.
    Schultz MT
    PLoS One; 2018; 13(1):e0190603. PubMed ID: 29381694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.