These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 27409622)

  • 1. A Novel Wearable Device for Food Intake and Physical Activity Recognition.
    Farooq M; Sazonov E
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27409622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation and Characterization of Chewing Bouts by Monitoring Temporalis Muscle Using Smart Glasses With Piezoelectric Sensor.
    Farooq M; Sazonov E
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1495-1503. PubMed ID: 28113335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Sensor System for Automatic Detection of Food Intake Through Non-Invasive Monitoring of Chewing.
    Sazonov ES; Fontana JM
    IEEE Sens J; 2012; 12(5):1340-1348. PubMed ID: 22675270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Evaluation of Smart Glasses for Food Intake and Physical Activity Classification.
    Chung J; Oh W; Baek D; Ryu S; Lee WG; Bang H
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerometer-Based Detection of Food Intake in Free-living Individuals.
    Farooq M; Sazonov E
    IEEE Sens J; 2018 May; 18(9):3752-3758. PubMed ID: 30364677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Chewing Detection System Based on PPG, Audio, and Accelerometry.
    Papapanagiotou V; Diou C; Zhou L; van den Boer J; Mars M; Delopoulos A
    IEEE J Biomed Health Inform; 2017 May; 21(3):607-618. PubMed ID: 27834659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust classification scheme for detection of food intake through non-invasive monitoring of chewing.
    Fontana JM; Sazonov ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4891-4. PubMed ID: 23367024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of team sport activities using a single wearable tracking device.
    Wundersitz DWT; Josman C; Gupta R; Netto KJ; Gastin PB; Robertson S
    J Biomech; 2015 Nov; 48(15):3975-3981. PubMed ID: 26472301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Measurement of Chew Count and Chewing Rate during Food Intake.
    Farooq M; Sazonov E
    Electronics (Basel); 2016; 5(4):. PubMed ID: 29082036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iHearken: Chewing sound signal analysis based food intake recognition system using Bi-LSTM softmax network.
    Khan MI; Acharya B; Chaurasiya RK
    Comput Methods Programs Biomed; 2022 Jun; 221():106843. PubMed ID: 35609358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glasses-type wearable device for monitoring the patterns of food intake and facial activity.
    Chung J; Chung J; Oh W; Yoo Y; Lee WG; Bang H
    Sci Rep; 2017 Jan; 7():41690. PubMed ID: 28134303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CNN Model for Physical Activity Recognition and Energy Expenditure Estimation from an Eyeglass-Mounted Wearable Sensor.
    Hossain MB; LaMunion SR; Crouter SE; Melanson EL; Sazonov E
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eating Event Recognition Using Accelerometer, Gyroscope, Piezoelectric, and Lung Volume Sensors.
    Mevissen SJ; Klaassen R; van Beijnum BF; Haarman JAM
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an Efficient One-Class Classifier for Mobile Devices and Wearable Sensors on the Context of Personal Risk Detection.
    Trejo LA; Barrera-Animas AY
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring eating habits using a piezoelectric sensor-based necklace.
    Kalantarian H; Alshurafa N; Le T; Sarrafzadeh M
    Comput Biol Med; 2015 Mar; 58():46-55. PubMed ID: 25616023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk.
    Kańtoch E
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-stage SVM approach for cardiac arrhythmias detection in short single-lead ECG recorded by a wearable device.
    Smisek R; Hejc J; Ronzhina M; Nemcova A; Marsanova L; Kolarova J; Smital L; Vitek M
    Physiol Meas; 2018 Sep; 39(9):094003. PubMed ID: 30102239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.