These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27410085)

  • 1. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.
    Luo S; Chen JM; Wang C; Xi X; Zeng H; Peng D; Li D
    Opt Express; 2016 May; 24(11):11578-93. PubMed ID: 27410085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data.
    Jing L; Wei X; Song Q; Wang F
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating pseudo large footprint waveforms from small footprint full-waveform airborne LiDAR data for the layered retrieval of LAI in orchards.
    Li W; Niu Z; Li J; Chen H; Gao S; Wu M; Li D
    Opt Express; 2016 May; 24(9):10142-56. PubMed ID: 27137623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-LiDAR technology.
    Delagrange S; Rochon P
    Ann Bot; 2011 Oct; 108(6):991-1000. PubMed ID: 21515607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.
    Antonarakis AS; Saatchi SS; Chazdon RL; Moorcroft PR
    Ecol Appl; 2011 Jun; 21(4):1120-37. PubMed ID: 21774418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model.
    Ma C; Liu M; Ding F; Li C; Cui Y; Chen W; Wang Y
    Sci Rep; 2022 Mar; 12(1):5473. PubMed ID: 35361910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].
    Liu F; Tan C; Lei PF
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3229-36. PubMed ID: 25898621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+.
    Leitold V; Keller M; Morton DC; Cook BD; Shimabukuro YE
    Carbon Balance Manag; 2015 Dec; 10(1):3. PubMed ID: 25685178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable LiDAR-Based Method for Improvement of Grass Height Measurement Accuracy: Comparison with SfM Methods.
    Obanawa H; Yoshitoshi R; Watanabe N; Sakanoue S
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32858888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LAI estimation based on physical model combining airborne LiDAR waveform and Sentinel-2 imagery.
    Shi Z; Shi S; Gong W; Xu L; Wang B; Sun J; Chen B; Xu Q
    Front Plant Sci; 2023; 14():1237988. PubMed ID: 37841611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.
    Wang D; Xin X; Shao Q; Brolly M; Zhu Z; Chen J
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characterization of mid-subtropical evergreen broad-leaved forest gap based on light detection and ranging (LiDAR)].
    Liu F; Tan C; Wang H; Zhang J; Wan Y; Long JP; Liu RX
    Ying Yong Sheng Tai Xue Bao; 2015 Dec; 26(12):3611-8. PubMed ID: 27111996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.
    Qin H; Wang C; Zhao K; Xi X
    PLoS One; 2018; 13(5):e0197510. PubMed ID: 29813094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops.
    Llop J; Gil E; Llorens J; Miranda-Fuentes A; Gallart M
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.
    Garcia M; Saatchi S; Ferraz A; Silva CA; Ustin S; Koltunov A; Balzter H
    Carbon Balance Manag; 2017 Dec; 12(1):4. PubMed ID: 28413848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS.
    Yuan W; Li J; Bhatta M; Shi Y; Baenziger PS; Ge Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data.
    Luo L; Zhai Q; Su Y; Ma Q; Kelly M; Guo Q
    Opt Express; 2018 May; 26(10):A562-A578. PubMed ID: 29801269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.
    Jimenez-Berni JA; Deery DM; Rozas-Larraondo P; Condon ATG; Rebetzke GJ; James RA; Bovill WD; Furbank RT; Sirault XRR
    Front Plant Sci; 2018; 9():237. PubMed ID: 29535749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of maize above-ground biomass based on stem-leaf separation strategy integrated with LiDAR and optical remote sensing data.
    Zhu Y; Zhao C; Yang H; Yang G; Han L; Li Z; Feng H; Xu B; Wu J; Lei L
    PeerJ; 2019; 7():e7593. PubMed ID: 31576235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.