These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27410091)

  • 21. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anomalous temperature fluorescence quenching of N-Trp terminal peptides.
    Brancaleon L; Crippa PR; Diemmi D
    Biopolymers; 1995 Dec; 36(6):723-33. PubMed ID: 8555420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mode-specific reorganization energies and ultrafast solvation dynamics of Tryptophan from Raman line-shape analysis.
    Milán-Garcés EA; Kaptan S; Puranik M
    Biophys J; 2013 Jul; 105(1):211-21. PubMed ID: 23823241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Red-shifted fluorescence of sound dental hard tissue.
    Zhang L; Nelson LY; Seibel EJ
    J Biomed Opt; 2011 Jul; 16(7):071411. PubMed ID: 21806257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols.
    Gallimore PJ; Davidson NM; Kalberer M; Pope FD; Ward AD
    Anal Chem; 2018 Aug; 90(15):8838-8844. PubMed ID: 29956916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-wavelength fluorescence of tyrosine and tryptophan solutions.
    Macías P; Pinto MC; Gutiérrez-Mérino C
    Biochem Int; 1987 Nov; 15(5):961-9. PubMed ID: 2963639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Charged Amino Acids in Sullying the Fluorescence of Tryptophan or Conjugated Dansyl Probe in Monomeric Proteins.
    Kumar A; Alom SE; Ahari D; Priyadarshi A; Ansari MZ; Swaminathan R
    Biochemistry; 2022 Mar; 61(5):339-353. PubMed ID: 35107253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman and Quantum Yield Studies of Trp48-
    Rivera JJ; Liang JH; Shimamura GR; Shafaat HS; Kim JE
    J Phys Chem B; 2019 Aug; 123(30):6430-6443. PubMed ID: 31313925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dielectric relaxation in a single tryptophan protein.
    Ghose M; Mandal S; Roy D; Mandal RK; Basu G
    FEBS Lett; 2001 Dec; 509(2):337-40. PubMed ID: 11741613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photophysical Behavior and Fluorescence Quenching of l-Tryptophan in Choline Chloride-Based Deep Eutectic Solvents.
    Kadyan A; Juneja S; Pandey S
    J Phys Chem B; 2019 Sep; 123(35):7578-7587. PubMed ID: 31402653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UV resonance Raman and excited-state relaxation rate studies of hemoglobin.
    Cho N; Song S; Asher SA
    Biochemistry; 1994 May; 33(19):5932-41. PubMed ID: 8180222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa.
    Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN
    Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence.
    Gakamsky DM; Dhillon B; Babraj J; Shelton M; Smith SD
    J R Soc Interface; 2011 Nov; 8(64):1616-21. PubMed ID: 21508010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence imaging of stained red blood cells with simultaneous resonance Raman photostability analysis.
    Talib AJ; Fisher A; Voronine DV; Sinyukov AM; Bustamante Lopez SC; Ambardar S; Meissner KE; Scully MO; Sokolov AV
    Analyst; 2019 Jul; 144(14):4362-4370. PubMed ID: 31197297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-enhanced raman scattering (SERS) detection of low concentrations of tryptophan amino acid in silver colloid.
    Kandakkathara A; Utkin I; Fedosejevs R
    Appl Spectrosc; 2011 May; 65(5):507-13. PubMed ID: 21513593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins.
    Moriyama Y; Ohta D; Hachiya K; Mitsui Y; Takeda K
    J Protein Chem; 1996 Apr; 15(3):265-72. PubMed ID: 8804574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical Modification of the Tryptophan Residue in a Recombinant Ca2+-ATPase N-domain for Studying Tryptophan-ANS FRET.
    Sampedro JG; Cataño Y
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34694285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of Tryptophan and Its Metabolites by High-Performance Liquid Chromatography.
    Dai Z; Sun S; Chen H; Liu M; Zhang L; Wu Z; Li J; Wu G
    Methods Mol Biol; 2019; 2030():131-142. PubMed ID: 31347115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence lifetimes of tryptophan: structural origin and relation with So --> 1Lb and So --> 1La transitions.
    Albani JR
    J Fluoresc; 2009 Nov; 19(6):1061-71. PubMed ID: 19533308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.