BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27410354)

  • 1. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy.
    Cogliati A; Canavesi C; Hayes A; Tankam P; Duma VF; Santhanam A; Thompson KP; Rolland JP
    Opt Express; 2016 Jun; 24(12):13365-74. PubMed ID: 27410354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.
    Rolland JP; Canavesi C; Tankam P; Cogliati A; Lanis M; Santhanam AP
    Stud Health Technol Inform; 2016; 220():335-40. PubMed ID: 27046601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A handheld microscope integrating photoacoustic microscopy and optical coherence tomography.
    Qin W; Chen Q; Xi L
    Biomed Opt Express; 2018 May; 9(5):2205-2213. PubMed ID: 29760981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror.
    Lu CD; Kraus MF; Potsaid B; Liu JJ; Choi W; Jayaraman V; Cable AE; Hornegger J; Duker JS; Fujimoto JG
    Biomed Opt Express; 2013 Dec; 5(1):293-311. PubMed ID: 24466495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEMS-based handheld fourier domain Doppler optical coherence tomography for intraoperative microvascular anastomosis imaging.
    Huang Y; Furtmüller GJ; Tong D; Zhu S; Lee WP; Brandacher G; Kang JU
    PLoS One; 2014; 9(12):e114215. PubMed ID: 25474742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Handheld laser scanning microscope catheter for real-time and
    Jeon J; Kim H; Jang H; Hwang K; Kim K; Park YG; Jeong KH
    Biomed Opt Express; 2022 Mar; 13(3):1497-1505. PubMed ID: 35414975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Handheld multi-modal imaging for point-of-care skin diagnosis based on akinetic integrated optics optical coherence tomography.
    Sancho-Durá J; Zinoviev K; Lloret-Soler J; Rubio-Guviernau JL; Margallo-Balbás E; Drexler W
    J Biophotonics; 2018 Oct; 11(10):e201800193. PubMed ID: 29992726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical coherence tomography endoscopic probe based on a tilted MEMS mirror.
    Duan C; Tanguy Q; Pozzi A; Xie H
    Biomed Opt Express; 2016 Sep; 7(9):3345-3354. PubMed ID: 27699103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors.
    Wang D; Liang P; Samuelson S; Jia H; Ma J; Xie H
    Biomed Opt Express; 2013; 4(10):2066-77. PubMed ID: 24156064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral fusing Gabor domain optical coherence microscopy based on FPGA processing.
    Meemon P; Lenaphet Y; Widjaja J
    Appl Opt; 2021 Mar; 60(7):2069-2076. PubMed ID: 33690300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mirau-based line-field confocal optical coherence tomography for three-dimensional high-resolution skin imaging.
    Xue W; Ogien J; Bulkin P; Coutrot AL; Dubois A
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35962466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Silicon Optical Bench-Based Forward-View Two-Axis Scanner for Microendoscopy Applications.
    Zheng D; Wang D; Yoon YK; Xie H
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33260524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEMS scanning micromirror for optical coherence tomography.
    Strathman M; Liu Y; Keeler EG; Song M; Baran U; Xi J; Sun MT; Wang R; Li X; Lin LY
    Biomed Opt Express; 2015 Jan; 6(1):211-24. PubMed ID: 25657887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography.
    Kim S; Lee C; Kim JY; Kim J; Lim G; Kim C
    J Biomed Opt; 2016 Oct; 21(10):106001. PubMed ID: 27731491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror.
    Sun J; Guo S; Wu L; Liu L; Choe SW; Sorg BS; Xie H
    Opt Express; 2010 Jun; 18(12):12065-75. PubMed ID: 20588329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circumferential-scanning endoscopic optical coherence tomography probe based on a circular array of six 2-axis MEMS mirrors.
    Luo S; Wang D; Tang J; Zhou L; Duan C; Wang D; Liu H; Zhu Y; Li G; Zhao H; Wu Y; An X; Li X; Liu Y; Huo L; Xie H
    Biomed Opt Express; 2018 May; 9(5):2104-2114. PubMed ID: 29760973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging.
    Li K; Yang Z; Liang W; Shang J; Liang Y; Wan S
    J Biomed Opt; 2020 Apr; 25(4):1-13. PubMed ID: 32314560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral fusing Gabor domain optical coherence microscopy.
    Meemon P; Widjaja J; Rolland JP
    Opt Lett; 2016 Feb; 41(3):508-11. PubMed ID: 26907410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D Au-Coated Resonant MEMS Scanner for NIR Fluorescence Intraoperative Confocal Microscope.
    Yao CY; Li B; Qiu Z
    Micromachines (Basel); 2019 Apr; 10(5):. PubMed ID: 31052229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed optical resolution photoacoustic microscopy with MEMS scanner using a novel and simple distortion correction method.
    Shintate R; Ishii T; Ahn J; Kim JY; Kim C; Saijo Y
    Sci Rep; 2022 Jun; 12(1):9221. PubMed ID: 35654947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.