These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27410458)

  • 1. Rate of Homogenous Nucleation of Ice in Supercooled Water.
    Atkinson JD; Murray BJ; O'Sullivan D
    J Phys Chem A; 2016 Aug; 120(33):6513-20. PubMed ID: 27410458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface crystallization of supercooled water in clouds.
    Tabazadeh A; Djikaev YS; Reiss H
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15873-8. PubMed ID: 12456877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of liquid clouds to homogenous freezing parameterizations.
    Herbert RJ; Murray BJ; Dobbie SJ; Koop T
    Geophys Res Lett; 2015 Mar; 42(5):1599-1605. PubMed ID: 26074652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
    Rzesanke D; Nadolny J; Duft D; Müller R; Kiselev A; Leisner T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9359-63. PubMed ID: 22294097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty.
    Riechers B; Wittbracht F; Hütten A; Koop T
    Phys Chem Chem Phys; 2013 Apr; 15(16):5873-87. PubMed ID: 23486888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the homogeneous freezing of water.
    Murray BJ; Broadley SL; Wilson TW; Bull SJ; Wills RH; Christenson HK; Murray EJ
    Phys Chem Chem Phys; 2010 Sep; 12(35):10380-7. PubMed ID: 20577704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous freezing of water droplets for different volumes and cooling rates.
    Shardt N; Isenrich FN; Waser B; Marcolli C; Kanji ZA; deMello AJ; Lohmann U
    Phys Chem Chem Phys; 2022 Nov; 24(46):28213-28221. PubMed ID: 36413087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of homogeneous crystal nucleation in water droplets on their radii and its implication for modeling the formation of ice particles in cirrus clouds.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2017 Aug; 19(30):20075-20081. PubMed ID: 28725886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates of homogeneous ice nucleation in levitated H2O and D2O droplets.
    Stöckel P; Weidinger IM; Baumgärtel H; Leisner T
    J Phys Chem A; 2005 Mar; 109(11):2540-6. PubMed ID: 16833556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of the homogeneous freezing of aqueous ammonium sulfate droplets.
    Larson BH; Swanson BD
    J Phys Chem A; 2006 Feb; 110(5):1907-16. PubMed ID: 16451024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freezing water in no-man's land.
    Manka A; Pathak H; Tanimura S; Wölk J; Strey R; Wyslouzil BE
    Phys Chem Chem Phys; 2012 Apr; 14(13):4505-16. PubMed ID: 22354018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous Freezing of Water Using Microfluidics.
    Tarn MD; Sikora SNF; Porter GCE; Shim JU; Murray BJ
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols.
    DeMott PJ; Mason RH; McCluskey CS; Hill TCJ; Perkins RJ; Desyaterik Y; Bertram AK; Trueblood JV; Grassian VH; Qiu Y; Molinero V; Tobo Y; Sultana CM; Lee C; Prather KA
    Environ Sci Process Impacts; 2018 Nov; 20(11):1559-1569. PubMed ID: 30382263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice nucleation forced by transient electric fields.
    Löwe JM; Hinrichsen V; Schremb M; Tropea C
    Phys Rev E; 2021 Dec; 104(6-1):064801. PubMed ID: 35030904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of crystallization by homogeneous nucleation of water droplets.
    Tanaka KK; Kimura Y
    Phys Chem Chem Phys; 2019 Jan; 21(5):2410-2418. PubMed ID: 30649109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum.
    Ando K; Arakawa M; Terasaki A
    Phys Chem Chem Phys; 2018 Nov; 20(45):28435-28444. PubMed ID: 30406234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.