These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 27410594)

  • 1. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.
    Zhang L; Li C; Zhong H; Xu C; Lei D; Li Y; Fan D
    Opt Express; 2016 Jun; 24(13):14406-18. PubMed ID: 27410594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of random soliton-like beams in a nonlinear fractional Schrödinger equation.
    Wang J; Jin Y; Gong X; Yang L; Chen J; Xue P
    Opt Express; 2022 Feb; 30(5):8199-8211. PubMed ID: 35299566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation.
    Zhang Y; Liu X; Belić MR; Zhong W; Zhang Y; Xiao M
    Phys Rev Lett; 2015 Oct; 115(18):180403. PubMed ID: 26565442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient.
    Zang F; Wang Y; Li L
    Opt Express; 2018 Sep; 26(18):23740-23750. PubMed ID: 30184870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffraction-free beams in fractional Schrödinger equation.
    Zhang Y; Zhong H; Belić MR; Ahmed N; Zhang Y; Xiao M
    Sci Rep; 2016 Apr; 6():23645. PubMed ID: 27097656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation dynamics of Laguerre-Gaussian beams in the fractional Schrödinger equation with noise disturbance.
    Zhou W; Liu A; Huang X; Bai Y; Fu X
    J Opt Soc Am A Opt Image Sci Vis; 2022 Apr; 39(4):736-743. PubMed ID: 35471400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling beam dynamics with spectral quadratic phase modulation in the fractional Schrödinger equation.
    Jiao C; Huang X; Bai Y; Fu X
    J Opt Soc Am A Opt Image Sci Vis; 2023 Nov; 40(11):2019-2025. PubMed ID: 38038067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous interaction of Airy beams in the fractional nonlinear Schrödinger equation.
    Zhang L; Zhang X; Wu H; Li C; Pierangeli D; Gao Y; Fan D
    Opt Express; 2019 Sep; 27(20):27936-27945. PubMed ID: 31684555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian beam to spatial soliton formation in Kerr media.
    Burak D; Nasalski W
    Appl Opt; 1994 Sep; 33(27):6393-401. PubMed ID: 20941176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media.
    Deng D; Guo Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046604. PubMed ID: 22181293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autofocus properties of astigmatic chirped symmetric Pearcey Gaussian vortex beams in the fractional Schrödinger equation with parabolic potential.
    He S; Peng X; He Y; Deng D
    Opt Express; 2023 May; 31(11):17930-17942. PubMed ID: 37381514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of linear and nonlinear propagation of three-Airy beams.
    Liang Y; Ye Z; Song D; Lou C; Zhang X; Xu J; Chen Z
    Opt Express; 2013 Jan; 21(2):1615-22. PubMed ID: 23389146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface gap solitons in a nonlinear fractional Schrödinger equation.
    Xiao J; Tian Z; Huang C; Dong L
    Opt Express; 2018 Feb; 26(3):2650-2658. PubMed ID: 29401802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable Gaussian-shaped soliton clusters in strongly nonlocal media.
    Song L; Yang Z; Li X; Zhang S
    Opt Express; 2018 Jul; 26(15):19182-19198. PubMed ID: 30114178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filamentation with nonlinear Bessel vortices.
    Jukna V; Milián C; Xie C; Itina T; Dudley J; Courvoisier F; Couairon A
    Opt Express; 2014 Oct; 22(21):25410-25. PubMed ID: 25401574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of vector dark solitons propagation and tunneling effect in the variable coefficient coupled nonlinear Schrödinger equation.
    Musammil NM; Porsezian K; Subha PA; Nithyanandan K
    Chaos; 2017 Feb; 27(2):023113. PubMed ID: 28249402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mighty morphing spatial solitons and bullets.
    Snyder AW; Mitchell JD
    Opt Lett; 1997 Jan; 22(1):16-8. PubMed ID: 18183088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipative surface solitons in a nonlinear fractional Schrödinger equation.
    Huang C; Dong L
    Opt Lett; 2019 Nov; 44(22):5438-5441. PubMed ID: 31730077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of vector fractional charge Laguerre-Gaussian light beams in the thermally nonlinear moving atmosphere.
    Molchan MA; Doktorov EV; Vlasov RA
    Opt Lett; 2010 Mar; 35(5):670-2. PubMed ID: 20195314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation.
    Yanay H; Khaykovich L; Malomed BA
    Chaos; 2009 Sep; 19(3):033145. PubMed ID: 19792025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.