These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27410600)

  • 1. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers.
    Daly M; Truong VG; Chormaic SN
    Opt Express; 2016 Jun; 24(13):14470-82. PubMed ID: 27410600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incoherent Optical Tweezers on Black Titanium.
    Hashimoto S; Uenobo Y; Takao R; Yuyama KI; Shoji T; Linklater DP; Ivanova E; Juodkazis S; Kameyama T; Torimoto T; Tsuboi Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27586-27593. PubMed ID: 34085525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation and Experiment of the Trapping Trajectory for Janus Particles in Linearly Polarized Optical Traps.
    Gao X; Zhai C; Lin Z; Chen Y; Li H; Hu C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO
    Loozen GB; Caro J
    Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP).
    Neale SL; Mazilu M; Wilson JI; Dholakia K; Krauss TF
    Opt Express; 2007 Oct; 15(20):12619-26. PubMed ID: 19550529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber.
    Lei H; Xu C; Zhang Y; Li B
    Nanoscale; 2012 Nov; 4(21):6707-9. PubMed ID: 22996078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evanescent field trapping and propulsion of Janus particles along optical nanofibers.
    Tkachenko G; Truong VG; Esporlas CL; Sanskriti I; Nic Chormaic S
    Nat Commun; 2023 Mar; 14(1):1691. PubMed ID: 36973283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contactless optical trapping and manipulation of nanoparticles utilizing SIBA mechanism and EDL force.
    Sahafi M; Habibzadeh-Sharif A
    Opt Express; 2019 Sep; 27(20):28944-28951. PubMed ID: 31684637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective particle trapping and optical binding in the evanescent field of an optical nanofiber.
    Frawley MC; Gusachenko I; Truong VG; Sergides M; Chormaic SN
    Opt Express; 2014 Jun; 22(13):16322-34. PubMed ID: 24977883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of suspended membrane waveguides towards a photonic atom trap integrated platform.
    Gehl M; Kindel W; Karl N; Orozco A; Musick K; Trotter D; Dallo C; Starbuck A; Leenheer A; DeRose C; Biedermann G; Jau YY; Lee J
    Opt Express; 2021 Apr; 29(9):13129-13140. PubMed ID: 33985054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide.
    Lou Y; Ning X; Wu B; Pang Y
    Front Optoelectron; 2021 Dec; 14(4):399-406. PubMed ID: 36637761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher order microfibre modes for dielectric particle trapping and propulsion.
    Maimaiti A; Truong VG; Sergides M; Gusachenko I; Nic Chormaic S
    Sci Rep; 2015 Mar; 5():9077. PubMed ID: 25766925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping force and optical lifting under focused evanescent wave illumination.
    Ganic D; Gan X; Gu M
    Opt Express; 2004 Nov; 12(22):5533-8. PubMed ID: 19484115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer.
    Kotnala A; Gordon R
    Nano Lett; 2014 Feb; 14(2):853-6. PubMed ID: 24404888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions.
    Sagué G; Vetsch E; Alt W; Meschede D; Rauschenbeutel A
    Phys Rev Lett; 2007 Oct; 99(16):163602. PubMed ID: 17995250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope.
    Visscher K; Brakenhoff GJ; Krol JJ
    Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals.
    Descharmes N; Dharanipathy UP; Diao Z; Tonin M; Houdré R
    Lab Chip; 2013 Aug; 13(16):3268-74. PubMed ID: 23797114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.