These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27410656)

  • 1. Detailed numerical analysis of photon emission from a single light emitter coupled with a nanofiber Bragg cavity.
    Takashima H; Fujiwara M; Schell AW; Takeuchi S
    Opt Express; 2016 Jun; 24(13):15050-8. PubMed ID: 27410656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis of the ultra-wide tunability of nanofiber Bragg cavities.
    Takashima H; Schell AW; Takeuchi S
    Opt Express; 2023 Apr; 31(9):13566-13575. PubMed ID: 37157241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct optical excitation of an NV center via a nanofiber Bragg-cavity: a theoretical simulation.
    Tashima T; Takashima H; Takeuchi S
    Opt Express; 2019 Sep; 27(19):27009-27016. PubMed ID: 31674569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters.
    Li W; Du J; Nic Chormaic S
    Opt Lett; 2018 Apr; 43(8):1674-1677. PubMed ID: 29652337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a nanofiber Bragg cavity with high quality factor using a focused helium ion beam.
    Takashima H; Fukuda A; Maruya H; Tashima T; Schell AW; Takeuchi S
    Opt Express; 2019 Mar; 27(5):6792-6800. PubMed ID: 30876257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency coupling of single quantum emitters into hole-tailored nanofibers.
    Wang X; Zhang P; Li G; Zhang T
    Opt Express; 2021 Mar; 29(7):11158-11168. PubMed ID: 33820234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid device of hexagonal boron nitride nanoflakes with defect centres and a nano-fibre Bragg cavity.
    Tashima T; Takashima H; Schell AW; Tran TT; Aharonovich I; Takeuchi S
    Sci Rep; 2022 Jan; 12(1):96. PubMed ID: 34996941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices.
    Almokhtar M; Fujiwara M; Takashima H; Takeuchi S
    Opt Express; 2014 Aug; 22(17):20045-59. PubMed ID: 25321215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purcell-Enhanced Single Photon Source Based on a Deterministically Placed WSe
    Iff O; Buchinger Q; Moczała-Dusanowska M; Kamp M; Betzold S; Davanco M; Srinivasan K; Tongay S; Antón-Solanas C; Höfling S; Schneider C
    Nano Lett; 2021 Jun; 21(11):4715-4720. PubMed ID: 34048254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings.
    Rickert L; Kupko T; Rodt S; Reitzenstein S; Heindel T
    Opt Express; 2019 Dec; 27(25):36824-36837. PubMed ID: 31873454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Purcell factor in fiber Bragg gratings utilizing the fundamental slow-light mode.
    Skolianos G; Arora A; Bernier M; Digonnet MJ
    Opt Lett; 2015 Aug; 40(15):3440-3. PubMed ID: 26258327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the finite pixel boundary on the angular emission characteristics of top-emitting organic light-emitting diodes.
    Kang K; Yoon J; Kim J; Lee H; Yang B
    Opt Express; 2015 Jun; 23(11):A709-17. PubMed ID: 26072894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots.
    Bremer L; Jimenez C; Thiele S; Weber K; Huber T; Rodt S; Herkommer A; Burger S; Höfling S; Giessen H; Reitzenstein S
    Opt Express; 2022 May; 30(10):15913-15928. PubMed ID: 36221446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bullseye dielectric cavities for photon collection from a surface-mounted quantum-light-emitter.
    Hekmati R; Hadden JP; Mathew A; Bishop SG; Lynch SA; Bennett AJ
    Sci Rep; 2023 Mar; 13(1):5316. PubMed ID: 37002334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of light emission in Bragg monolayer-thick quantum well structures.
    Pozina G; Ivanov KA; Morozov KM; Girshova EI; Egorov AY; Clark SJ; Kaliteevski MA
    Sci Rep; 2019 Jul; 9(1):10162. PubMed ID: 31308456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twin-nanofiber structure for a highly efficient single-photon collection.
    Shao L; Wu H; Fang W; Tong L
    Opt Express; 2022 Mar; 30(6):9147-9155. PubMed ID: 35299350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellphone Monitoring of Multi-Qubit Emission Enhancements from Pd-Carbon Plasmonic Nanocavities in Tunable Coupling Regimes with Attomolar Sensitivity.
    Srinivasan V; Manne AK; Patnaik SG; Ramamurthy SS
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23281-8. PubMed ID: 27529116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarized emission of quantum dots in microcavity and anisotropic Purcell factors.
    Lee YS; Lin SD
    Opt Express; 2014 Jan; 22(2):1512-23. PubMed ID: 24515158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design study for an efficient semiconductor quantum light source operating in the telecom C-band based on an electrically-driven circular Bragg grating.
    Barbiero A; Huwer J; Skiba-Szymanska J; Müller T; Stevenson RM; Shields AJ
    Opt Express; 2022 Mar; 30(7):10919-10928. PubMed ID: 35473046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.