These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 27410667)

  • 1. Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons.
    Kang D; Anirban A; Helmy AS
    Opt Express; 2016 Jun; 24(13):15160-70. PubMed ID: 27410667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement.
    Fang WT; Li YH; Zhou ZY; Xu LX; Guo GC; Shi BS
    Opt Express; 2018 May; 26(10):12912-12921. PubMed ID: 29801324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution.
    Lim HC; Yoshizawa A; Tsuchida H; Kikuchi K
    Opt Express; 2008 Sep; 16(20):16052-7. PubMed ID: 18825244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
    Li Y; Zhou ZY; Ding DS; Shi BS
    Opt Express; 2015 Nov; 23(22):28792-800. PubMed ID: 26561148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation-free broadband entangled photon pair sources.
    Chen C; Zhu EY; Riazi A; Gladyshev AV; Corbari C; Ibsen M; Kazansky PG; Qian L
    Opt Express; 2017 Sep; 25(19):22667-22678. PubMed ID: 29041574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots.
    Zeuner KD; Jöns KD; Schweickert L; Reuterskiöld Hedlund C; Nuñez Lobato C; Lettner T; Wang K; Gyger S; Schöll E; Steinhauer S; Hammar M; Zwiller V
    ACS Photonics; 2021 Aug; 8(8):2337-2344. PubMed ID: 34476289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band.
    Li X; Voss PL; Sharping JE; Kumar P
    Phys Rev Lett; 2005 Feb; 94(5):053601. PubMed ID: 15783637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of ultraviolet entangled photons in a semiconductor.
    Edamatsu K; Oohata G; Shimizu R; Itoh T
    Nature; 2004 Sep; 431(7005):167-70. PubMed ID: 15356626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bragg reflection waveguide as a source of wavelength-multiplexed polarization-entangled photon pairs.
    Svozilík J; Hendrych M; Torres JP
    Opt Express; 2012 Jul; 20(14):15015-23. PubMed ID: 22772197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion.
    Kultavewuti P; Zhu EY; Xing X; Qian L; Pusino V; Sorel M; Aitchison JS
    Sci Rep; 2017 Jul; 7(1):5785. PubMed ID: 28725031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.
    Chen Y; Zhang J; Zopf M; Jung K; Zhang Y; Keil R; Ding F; Schmidt OG
    Nat Commun; 2016 Jan; 7():10387. PubMed ID: 26813326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband source of polarization entangled photons.
    Fraine A; Minaeva O; Simon DS; Egorov R; Sergienko AV
    Opt Lett; 2012 Jun; 37(11):1910-2. PubMed ID: 22660070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Photonic System for Generating Unconditional Polarization-Entangled Photons Based on Multiple Quantum Interference.
    Terashima H; Sato Y; Kobayashi S; Tsubakiyama T; Nozaki R; Kubo S; Osada T; Sanaka K
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term transmission of entangled photons from a single quantum dot over deployed fiber.
    Xiang ZH; Huwer J; Stevenson RM; Skiba-Szymanska J; Ward MB; Farrer I; Ritchie DA; Shields AJ
    Sci Rep; 2019 Mar; 9(1):4111. PubMed ID: 30858479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm.
    Lettner T; Gyger S; Zeuner KD; Schweickert L; Steinhauer S; Reuterskiöld Hedlund C; Stroj S; Rastelli A; Hammar M; Trotta R; Jöns KD; Zwiller V
    Nano Lett; 2021 Dec; 21(24):10501-10506. PubMed ID: 34894699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum storage of entangled photons at telecom wavelengths in a crystal.
    Jiang MH; Xue W; He Q; An YY; Zheng X; Xu WJ; Xie YB; Lu Y; Zhu S; Ma XS
    Nat Commun; 2023 Nov; 14(1):6995. PubMed ID: 37914741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits.
    Jin H; Liu FM; Xu P; Xia JL; Zhong ML; Yuan Y; Zhou JW; Gong YX; Wang W; Zhu SN
    Phys Rev Lett; 2014 Sep; 113(10):103601. PubMed ID: 25238358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna.
    Chen Y; Zopf M; Keil R; Ding F; Schmidt OG
    Nat Commun; 2018 Jul; 9(1):2994. PubMed ID: 30065263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength-tunable sources of entangled photons interfaced with atomic vapours.
    Trotta R; Martín-Sánchez J; Wildmann JS; Piredda G; Reindl M; Schimpf C; Zallo E; Stroj S; Edlinger J; Rastelli A
    Nat Commun; 2016 Jan; 7():10375. PubMed ID: 26815609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of broadband ultraviolet frequency-entangled photons using cavity quantum plasmonics.
    Oka H
    Sci Rep; 2017 Aug; 7(1):8047. PubMed ID: 28808262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.