These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27410802)

  • 1. Rogue-wave bullets in a composite (2+1)D nonlinear medium.
    Chen S; Soto-Crespo JM; Baronio F; Grelu P; Mihalache D
    Opt Express; 2016 Jul; 24(14):15251-60. PubMed ID: 27410802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework.
    Slunyaev AV; Pelinovsky EN
    Phys Rev Lett; 2016 Nov; 117(21):214501. PubMed ID: 27911520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations.
    Ankiewicz A; Akhmediev N; Soto-Crespo JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026602. PubMed ID: 20866932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation.
    Yang Y; Yan Z; Malomed BA
    Chaos; 2015 Oct; 25(10):103112. PubMed ID: 26520078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis of the Hirota equation: Modulational instability, breathers, rogue waves, and interactions.
    Wang L; Yan Z; Guo B
    Chaos; 2020 Jan; 30(1):013114. PubMed ID: 32013485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of optical activity on rogue waves propagating in chiral optical fibers.
    Temgoua DD; Kofane TC
    Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.
    Yang G; Li L; Jia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046608. PubMed ID: 22680599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient modes for the coupled modified Korteweg-de Vries equations with negative cubic nonlinearity: Stability and applications of breathers.
    Wong CN; Yin HM; Chow KW
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39177957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane.
    Liu TY; Chiu TL; Clarkson PA; Chow KW
    Chaos; 2017 Sep; 27(9):091103. PubMed ID: 28964137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents.
    Kundu A; Mukherjee A; Naskar T
    Proc Math Phys Eng Sci; 2014 Apr; 470(2164):20130576. PubMed ID: 24711719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rogue wave modes for a derivative nonlinear Schrödinger model.
    Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers.
    Wang L; Zhu YJ; Qi FH; Li M; Guo R
    Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable parabolic-cylinder optical rogue wave.
    Zhong WP; Chen L; Belić M; Petrović N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043201. PubMed ID: 25375612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bright and dark rogue internal waves: The Gardner equation approach.
    Bokaeeyan M; Ankiewicz A; Akhmediev N
    Phys Rev E; 2019 Jun; 99(6-1):062224. PubMed ID: 31330713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rogue wave spectra of the Kundu-Eckhaus equation.
    Bayındır C
    Phys Rev E; 2016 Jun; 93(6):062215. PubMed ID: 27415263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation.
    Wen XY; Yan Z
    Chaos; 2015 Dec; 25(12):123115. PubMed ID: 26723154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.
    Ankiewicz A; Akhmediev N
    Phys Rev E; 2017 Jul; 96(1-1):012219. PubMed ID: 29347075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rogue waves and rational solutions of the Hirota equation.
    Ankiewicz A; Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046602. PubMed ID: 20481848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.