These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27410841)

  • 1. Squeezed hollow-core photonic Bragg fiber for surface sensing applications.
    Li J; Qu H; Skorobogatiy M
    Opt Express; 2016 Jul; 24(14):15687-701. PubMed ID: 27410841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications.
    Li J; Nallappan K; Guerboukha H; Skorobogatiy M
    Opt Express; 2017 Feb; 25(4):4126-4144. PubMed ID: 28241619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers.
    Li J; Qu H; Skorobogatiy M
    Opt Express; 2015 Sep; 23(18):22963-76. PubMed ID: 26368402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic bandgap fiber-based Surface Plasmon Resonance sensors.
    Gauvreau B; Hassani A; Fassi Fehri M; Kabashin A; Skorobogatiy MA
    Opt Express; 2007 Sep; 15(18):11413-26. PubMed ID: 19547499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow-Core Microstructured Optical Fiber Based Refractometer: Numerical Simulation and Experimental Studies.
    Ayyanar N; Thavasi Raja G; Y S S; Monfared YE; A A Z; A A S; Yu GA
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):194-198. PubMed ID: 35041611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive manufacturing of resonant fluidic sensors based on photonic bandgap waveguides for terahertz applications.
    Cao Y; Nallappan K; Guerboukha H; Gervais T; Skorobogatiy M
    Opt Express; 2019 Sep; 27(20):27663-27681. PubMed ID: 31684530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic bandgap Bragg fiber sensors for bending/displacement detection.
    Qu H; Brastaviceanu T; Bergeron F; Olesik J; Pavlov I; Ishigure T; Skorobogatiy M
    Appl Opt; 2013 Sep; 52(25):6344-9. PubMed ID: 24085096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core.
    Rifat AA; Mahdiraji GA; Chow DM; Shee YG; Ahmed R; Adikan FR
    Sensors (Basel); 2015 May; 15(5):11499-510. PubMed ID: 25996510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Color-changing and color-tunable photonic bandgap fiber textiles.
    Gauvreau B; Guo N; Schicker K; Stoeffler K; Boismenu F; Ajji A; Wingfield R; Dubois C; Skorobogatiy M
    Opt Express; 2008 Sep; 16(20):15677-93. PubMed ID: 18825206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering.
    Yang X; Shi C; Wheeler D; Newhouse R; Chen B; Zhang JZ; Gu C
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):977-84. PubMed ID: 20448763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of highly sensitive biosensors using hollow-core microstructured fibers for plasma sensing in aids with human metabolism.
    Alam MK; Vadivel K; Natesan A; Sghaireen MG; Ganji KK; Srivastava KC; Nashwan S; Khader Y
    Opt Quantum Electron; 2023; 55(2):188. PubMed ID: 36618531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-level sensing based on a hollow core Bragg fiber.
    Wang Y; Yan G; Lian Z; Wu C; He S
    Opt Express; 2018 Aug; 26(17):21656-21663. PubMed ID: 30130868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers.
    Stolyarov AM; Gumennik A; McDaniel W; Shapira O; Schell B; Sorin F; Kuriki K; Benoit G; Rose A; Joannopoulos JD; Fink Y
    Opt Express; 2012 May; 20(11):12407-15. PubMed ID: 22714227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications.
    Liu S; Wang Y; Hou M; Guo J; Li Z; Lu P
    Opt Express; 2013 Dec; 21(25):31690-7. PubMed ID: 24514741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral characterization of a photonic bandgap fiber for sensing applications.
    Aref SH; Amezcua-Correac R; Carvalho JP; Frazão O; Santos JL; Araújo FM; Latifi H; Farahi F; Ferreira LA; Knight JC
    Appl Opt; 2010 Apr; 49(10):1870-5. PubMed ID: 20357872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature response of an all-solid photonic bandgap fiber for sensing applications.
    de Oliveira RE; Knight JC; Taru T; de Matos CJ
    Appl Opt; 2013 Mar; 52(7):1461-7. PubMed ID: 23458799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.
    Tabassum R; Gupta BD
    Analyst; 2015 Mar; 140(6):1863-70. PubMed ID: 25635269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-sensitivity, high-resolution polymer fiber Bragg grating humidity sensor harnessing microwave photonic filtering response analysis.
    Zhu K; Cheng X; Zhao Z; Lu C
    Opt Lett; 2020 Dec; 45(24):6603-6606. PubMed ID: 33325861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow-Core Photonic Crystal Fiber Gas Sensing.
    Yu R; Chen Y; Shui L; Xiao L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow Core Bragg Fiber-Based Sensor for Simultaneous Measurement of Curvature and Temperature.
    Yang Z; Yuan W; Yu C
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.