These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27410842)

  • 41. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes.
    Habib MS; Bang O; Bache M
    Opt Express; 2015 Jun; 23(13):17394-406. PubMed ID: 26191748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Function of second cladding layer in hollow core tube lattice fibers.
    Huang X; Yoo S; Yong K
    Sci Rep; 2017 May; 7(1):1618. PubMed ID: 28487540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures.
    Yirmiyahu Y; Niv A; Biener G; Kleiner V; Hasman E
    Opt Express; 2007 Oct; 15(20):13404-14. PubMed ID: 19550609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dispersion-optimized optical single-mode glass fiber waveguides.
    Jürgensen K
    Appl Opt; 1975 Jan; 14(1):163-8. PubMed ID: 20134847
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hollow-core negative-curvature fiber for UV guidance.
    Gao SF; Wang YY; Ding W; Wang P
    Opt Lett; 2018 Mar; 43(6):1347-1350. PubMed ID: 29543288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Numerical modeling of a hybrid hollow-core fiber for enhanced mid-infrared guidance.
    Hayashi JG; Mousavi SMA; Ventura A; Poletti F
    Opt Express; 2021 May; 29(11):17042-17052. PubMed ID: 34154255
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Liquid-core, liquid-cladding photonic crystal fibers.
    De Matos CJ; Cordeiro CM; Dos Santos EM; Ong JS; Bozolan A; Brito Cruz CH
    Opt Express; 2007 Sep; 15(18):11207-12. PubMed ID: 19547475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Epsilon negative-based, broadband single-polarization single-mode hollow core anti-resonant photonic crystal fiber.
    Liu S; Zhang L; Tian M; Yang T; Dong Y
    Opt Express; 2021 May; 29(10):15664-15677. PubMed ID: 33985263
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of cladding elements on the loss performance of hollow-core anti-resonant fibers.
    Selim Habib M; Markos C; Amezcua-Correa R
    Opt Express; 2021 Feb; 29(3):3359-3374. PubMed ID: 33770935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-index-core Bragg fibers: dispersion properties.
    Monsoriu J; Silvestre E; Ferrando A; Andrés P; Miret J
    Opt Express; 2003 Jun; 11(12):1400-5. PubMed ID: 19466011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes.
    Vincetti L; Setti V
    Opt Express; 2012 Jun; 20(13):14350-61. PubMed ID: 22714496
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-mode, low loss hollow-core anti-resonant fiber designs.
    Habib MS; Antonio-Lopez JE; Markos C; Schülzgen A; Amezcua-Correa R
    Opt Express; 2019 Feb; 27(4):3824-3836. PubMed ID: 30876007
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes.
    Uebel P; Günendi MC; Frosz MH; Ahmed G; Edavalath NN; Ménard JM; Russell PS
    Opt Lett; 2016 May; 41(9):1961-4. PubMed ID: 27128049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical time domain backscattering of antiresonant hollow core fibers.
    Slavík R; Numkam Fokoua ER; Bradley TD; Taranta AA; Komanec M; Zvánovec S; Michaud-Belleau V; Poletti F; Richardson DJ
    Opt Express; 2022 Aug; 30(17):31310-31321. PubMed ID: 36242216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes.
    Hartung A; Kobelke J; Schwuchow A; Wondraczek K; Bierlich J; Popp J; Frosch T; Schmidt MA
    Opt Express; 2014 Aug; 22(16):19131-40. PubMed ID: 25320999
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm.
    Pryamikov AD; Biriukov AS; Kosolapov AF; Plotnichenko VG; Semjonov SL; Dianov EM
    Opt Express; 2011 Jan; 19(2):1441-8. PubMed ID: 21263685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.
    Rozé M; Ung B; Mazhorova A; Walther M; Skorobogatiy M
    Opt Express; 2011 May; 19(10):9127-38. PubMed ID: 21643167
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dispersion tailoring and compensation by modal interactions in OmniGuide fibers.
    Engeness T; Ibanescu M; Johnson S; Weisberg O; Skorobogatiy M; Jacobs S; Fink Y
    Opt Express; 2003 May; 11(10):1175-96. PubMed ID: 19465984
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification.
    Février S; Beaudou B; Viale P
    Opt Express; 2010 Mar; 18(5):5142-50. PubMed ID: 20389527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.