These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27410869)

  • 1. Visualization of Bloch surface waves and directional propagation effects on one-dimensional photonic crystal substrate.
    Hung YJ; Lin IS
    Opt Express; 2016 Jul; 24(14):16003-9. PubMed ID: 27410869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional polymer grating and prism on Bloch surface waves platform.
    Yu L; Barakat E; Di Francesco J; Herzig HP
    Opt Express; 2015 Dec; 23(25):31640-7. PubMed ID: 26698957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-shifted Bragg gratings for Bloch surface waves.
    Doskolovich LL; Bezus EA; Bykov DA
    Opt Express; 2015 Oct; 23(21):27034-45. PubMed ID: 26480365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurements of forces induced by Bloch surface waves in a one-dimensional photonic crystal.
    Shilkin DA; Lyubin EV; Soboleva IV; Fedyanin AA
    Opt Lett; 2015 Nov; 40(21):4883-6. PubMed ID: 26512474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure.
    Pang Y; Liu YS; Liu JX; Feng WJ
    Ultrasonics; 2016 Apr; 67():120-128. PubMed ID: 26836289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaky Bloch-like surface waves in the radiation-continuum for sensitivity enhanced biosensors via azimuthal interrogation.
    Koju V; Robertson WM
    Sci Rep; 2017 Jun; 7(1):3233. PubMed ID: 28607391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Bloch waves in resonantly doped photonic crystals.
    Kaso A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046611. PubMed ID: 17155196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Stability and Sensing Performance of Mid-Infrared Bloch Surface Waves on a One-Dimensional Photonic Crystal.
    Occhicone A; Polito R; Michelotti F; Ortolani M; Baldassarre L; Pea M; Sinibaldi A; Notargiacomo A; Cibella S; Mattioli F; Roy P; Brubach JB; Calvani P; Nucara A
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43853-43860. PubMed ID: 36106792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuned switching of surface waves by a liquid crystal cap layer in one-dimensional photonic crystals.
    Hajian H; Rezaei B; Vala AS; Kalafi M
    Appl Opt; 2012 May; 51(15):2909-16. PubMed ID: 22614593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Photonic Devices based on Bloch Surface Waves with One-Dimensional Grooves.
    Wang R; Chen J; Xiang Y; Kuai Y; Wang P; Ming H; Lakowicz JR; Zhang D
    Phys Rev Appl; 2018 Aug; 10(2):. PubMed ID: 31576366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bloch modes at the surface of a photonic crystal interacting with a waveguide.
    Munguía-Arvayo R; García-Llamas R; Gaspar-Armenta J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1588-94. PubMed ID: 25121447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bloch surface waves at the telecommunication wavelength with lithium niobate as the top layer for integrated optics.
    Kovalevich T; Belharet D; Robert L; Ulliac G; Kim MS; Herzig HP; Grosjean T; Bernal MP
    Appl Opt; 2019 Mar; 58(7):1757-1762. PubMed ID: 30874213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant diffraction of symmetric and antisymmetric Bloch surface waves on a corrugated periodic multilayer slab.
    Descrovi E
    Opt Lett; 2009 Jul; 34(13):1973-5. PubMed ID: 19571970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Bloch Wave Resonances and Bloch Gaps in Uniform Materials with Reconfigurable Boundary Profiles.
    Pogrebnyak VA; Furlani EP
    Phys Rev Lett; 2016 May; 116(20):206802. PubMed ID: 27258880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional Bloch surface wave coupling enabled by magnetic spin-momentum locking of light.
    Luo K; Huang Z; Lv X; Qiu W; Guan H; Yang T; Grosjean T; Lu H
    Nanoscale Adv; 2023 Mar; 5(6):1664-1671. PubMed ID: 36926573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-difference complex-wavevector band structure solver for analysis and design of periodic radiative microphotonic structures.
    Notaros J; Popović MA
    Opt Lett; 2015 Mar; 40(6):1053-6. PubMed ID: 25768180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scattering from impedance gratings and surface wave formation.
    Zhu W; Stinson MR; Daigle GA
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):1996-2012. PubMed ID: 12051419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode matching interface for efficient coupling of light into planar photonic crystals.
    Witzens J; Hochberg M; Baehr-Jones T; Scherer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046609. PubMed ID: 15169120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local probing of Bloch mode dispersion in a photonic crystal waveguide.
    Engelen RJ; Karle T; Gersen H; Korterik J; Krauss T; Kuipers L; van Hulst N
    Opt Express; 2005 Jun; 13(12):4457-64. PubMed ID: 19495360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.