These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27410874)

  • 1. Vertically-oriented nanoparticle dimer based on focused plasmonic trapping.
    Shen Z; Su L; Shen YC
    Opt Express; 2016 Jul; 24(14):16052-65. PubMed ID: 27410874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic trapping and tuning of a gold nanoparticle dimer.
    Shen Z; Su L
    Opt Express; 2016 Mar; 24(5):4801-4811. PubMed ID: 29092308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized Surface Plasmon Resonance Sensor Based at Metallic Sphere Dimer Particle.
    Li JY
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1443-446. PubMed ID: 29687982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three dimensional nanoparticle trapping enhanced by surface plasmon resonance.
    Wu J; Gan X
    Opt Express; 2010 Dec; 18(26):27619-26. PubMed ID: 21197036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap controlled plasmon-dielectric coupling effects investigated with single nanoparticle-terminated atomic force microscope probes.
    Huang Q; Teran Arce F; Lee J; Yoon I; Villanueva J; Lal R; Sirbuly DJ
    Nanoscale; 2016 Oct; 8(39):17102-17107. PubMed ID: 27714046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes.
    Heeg S; Clark N; Vijayaraghavan A
    Nanotechnology; 2018 Nov; 29(46):465710. PubMed ID: 30251709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic nano-tweezer based on square nanoplate tetramers.
    Jin Q; Wang L; Yan S; Wei H; Huang Y
    Appl Opt; 2018 Jul; 57(19):5328-5332. PubMed ID: 30117824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution apertureless near-field optical imaging using gold nanosphere probes.
    Kim ZH; Leone SR
    J Phys Chem B; 2006 Oct; 110(40):19804-9. PubMed ID: 17020365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers.
    Varas A; García-González P; García-Vidal FJ; Rubio A
    J Phys Chem Lett; 2015 May; 6(10):1891-8. PubMed ID: 26263265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection.
    Zhang M; Wang J; Tian Q
    Opt Express; 2013 Apr; 21(8):9414-21. PubMed ID: 23609652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror.
    Huang Y; Ma L; Hou M; Li J; Xie Z; Zhang Z
    Sci Rep; 2016 Jul; 6():30011. PubMed ID: 27418039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.
    Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ
    Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic and sensing properties of vertically oriented hexagonal gold nanoplates.
    Yin H; Guo Y; Cui X; Lu W; Yang Z; Yang B; Wang J
    Nanoscale; 2018 Aug; 10(31):15058-15070. PubMed ID: 30059125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.
    Liu GQ; Hu Y; Liu ZQ; Chen YH; Cai ZJ; Zhang XN; Huang K
    Phys Chem Chem Phys; 2014 Mar; 16(9):4320-8. PubMed ID: 24452786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.