These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27410949)

  • 1. Metallogels from Coordination Complexes, Organometallic, and Coordination Polymers.
    Dastidar P; Ganguly S; Sarkar K
    Chem Asian J; 2016 Sep; 11(18):2484-98. PubMed ID: 27410949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly.
    Li B; He T; Fan Y; Yuan X; Qiu H; Yin S
    Chem Commun (Camb); 2019 Jul; 55(56):8036-8059. PubMed ID: 31206102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states.
    Mehdi H; Pang H; Gong W; Dhinakaran MK; Wajahat A; Kuang X; Ning G
    Org Biomol Chem; 2016 Jul; 14(25):5956-64. PubMed ID: 27193611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete and Polymeric Self-Assembled Palladium(II) Complexes as Supramolecular Gelators.
    Ganta S; Chand DK
    Chem Asian J; 2018 Dec; 13(24):3777-3789. PubMed ID: 30231185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new class of dendritic metallogels with multiple stimuli-responsiveness and as templates for the in situ synthesis of silver nanoparticles.
    Liu ZX; Feng Y; Zhao ZY; Yan ZC; He YM; Luo XJ; Liu CY; Fan QH
    Chemistry; 2014 Jan; 20(2):533-41. PubMed ID: 24338861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular metallogels with complex of phosphonate substituted carbazole derivative and aluminum(III) ion as gelator.
    Ding Z; Chen B; Ding J; Wang L; Han Y
    J Colloid Interface Sci; 2014 Jul; 425():102-9. PubMed ID: 24776670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular assemblies of amide-derived organogels featuring rigid π-conjugated phenylethynyl frameworks.
    Rao MR; Sun SS
    Langmuir; 2013 Dec; 29(49):15146-58. PubMed ID: 24033100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion-responsive supramolecular gels.
    Maeda H
    Chemistry; 2008; 14(36):11274-82. PubMed ID: 18823056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.
    Hu J; Liu S
    Acc Chem Res; 2014 Jul; 47(7):2084-95. PubMed ID: 24742049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials.
    Ni XL; Xiao X; Cong H; Zhu QJ; Xue SF; Tao Z
    Acc Chem Res; 2014 Apr; 47(4):1386-95. PubMed ID: 24673124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient air-stable organometallic low-molecular-mass gelators for ionic liquids: synthesis, aggregation and application of pyridine-bridged bis(benzimidazolylidene)-palladium complexes.
    Tu T; Bao X; Assenmacher W; Peterlik H; Daniels J; Dötz KH
    Chemistry; 2009; 15(8):1853-61. PubMed ID: 19123219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative outcomes of the voltage-dependent current density, charge transportation and rectification ratio of electronic devices fabricated using mechanically flexible supramolecular networks.
    Pal B; Majumdar S; Pal I; Lepcha G; Dey A; Ray PP; Dey B
    Dalton Trans; 2024 May; 53(18):7912-7921. PubMed ID: 38639606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anchoring Drugs to a Zinc(II) Coordination Polymer Network: Exploiting Structural Rationale toward the Design of Metallogels for Drug-Delivery Applications.
    Biswas P; Dastidar P
    Inorg Chem; 2021 Mar; 60(5):3218-3231. PubMed ID: 33570921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.
    Kim SB; Pike RD; Sweigart DA
    Acc Chem Res; 2013 Nov; 46(11):2485-97. PubMed ID: 23745596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular metallogels with bulk self-healing properties prepared by in situ metal complexation.
    Häring M; Díaz DD
    Chem Commun (Camb); 2016 Nov; 52(89):13068-13081. PubMed ID: 27711325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelation induced supramolecular chirality: chirality transfer, amplification and application.
    Duan P; Cao H; Zhang L; Liu M
    Soft Matter; 2014 Aug; 10(30):5428-48. PubMed ID: 24975350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A supramolecular gel based on a glycosylated amino acid derivative with the properties of gel to crystal transition.
    Liu J; Xu F; Sun Z; Pan Y; Tian J; Lin HC; Li X
    Soft Matter; 2016 Jan; 12(1):141-8. PubMed ID: 26446296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions.
    Yan X; Cook TR; Pollock JB; Wei P; Zhang Y; Yu Y; Huang F; Stang PJ
    J Am Chem Soc; 2014 Mar; 136(12):4460-3. PubMed ID: 24621148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.