These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27411112)

  • 1. Spatial light coupled into a single-mode fiber by a Maksutov-Cassegrain antenna through atmospheric turbulence.
    Ke X; Lei S
    Appl Opt; 2016 May; 55(15):3897-902. PubMed ID: 27411112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber coupling efficiency of a Bessel-Gaussian beam received by a Cassegrain antenna under atmospheric turbulence.
    Shang S; Zhang J; Qi Y; Zeng B; Jiang P; Yang H
    Appl Opt; 2022 Aug; 61(23):6871-6878. PubMed ID: 36255767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence.
    Dikmelik Y; Davidson FM
    Appl Opt; 2005 Aug; 44(23):4946-52. PubMed ID: 16114533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate analysis of the efficiency of Bessel Gauss beams passing through two Cassegrain optical antennas in atmospheric turbulence.
    Shang S; Yang H; Jiang P
    Opt Express; 2022 Oct; 30(22):40032-40043. PubMed ID: 36298948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Set of mathematical models for Bessel-Gauss beams coupling into the parabolic-index fiber under the influence of atmospheric turbulence and random jitter.
    Shang S; Li X; Deng W; Wang Y; Han Y; Su H; Yang H; Jiang P
    Opt Express; 2023 Jul; 31(15):24157-24172. PubMed ID: 37475249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling plane wave received by an annular aperture into a single-mode fiber in the presence of atmospheric turbulence.
    Chen C; Yang H; Wang H; Tong S; Lou Y
    Appl Opt; 2011 Jan; 50(3):307-12. PubMed ID: 21263727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the transmission efficiency of the Cassegrain optical system for Bessel-Gaussian beams.
    Liu R; Yang H; Jiang P; Qin Y; Caiyang W; Cao B; Zhou M; Mao S
    Appl Opt; 2020 Apr; 59(12):3736-3741. PubMed ID: 32400500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffraction characteristics of a Laguerre-Gaussian beam through a Maksutov-Cassegrain optical system.
    Ke X; Wang J; Wang M; Tan Z
    Appl Opt; 2018 Apr; 57(10):2570-2576. PubMed ID: 29714242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-space to few-mode-fiber coupling under atmospheric turbulence.
    Zheng D; Li Y; Chen E; Li B; Kong D; Li W; Wu J
    Opt Express; 2016 Aug; 24(16):18739-44. PubMed ID: 27505836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.
    Chen M; Liu C; Xian H
    Appl Opt; 2015 Oct; 54(29):8722-6. PubMed ID: 26479809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.
    Wu H; Sheng S; Huang Z; Zhao S; Wang H; Sun Z; Xu X
    Opt Express; 2013 Feb; 21(4):4005-16. PubMed ID: 23481935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks.
    Takenaka H; Toyoshima M; Takayama Y
    Opt Express; 2012 Jul; 20(14):15301-8. PubMed ID: 22772227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical model of the efficiency for spatial light coupling into a single-mode fiber in the presence of atmospheric turbulence.
    Ma J; Ma L; Yang Q; Ran Q
    Appl Opt; 2015 Nov; 54(31):9287-93. PubMed ID: 26560584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere.
    Guo L; Xing M; Tang Y; Dan J
    Sensors (Basel); 2008 May; 8(5):3056-3066. PubMed ID: 27879865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt.
    Zheng D; Li Y; Zhou H; Bian Y; Yang C; Li W; Qiu J; Guo H; Hong X; Zuo Y; Giles IP; Tong W; Wu J
    Opt Express; 2018 Oct; 26(22):28879-28890. PubMed ID: 30470058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power coupling of a two-Cassegrain-telescopes system in turbulent atmosphere in a slant path.
    Chu X; Zhou G
    Opt Express; 2007 Jun; 15(12):7697-707. PubMed ID: 19547098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of mode diversity reception of a polarization-division-multiplexed signal for free-space optical communication under atmospheric turbulence.
    Arikawa M; Ito T
    Opt Express; 2018 Oct; 26(22):28263-28276. PubMed ID: 30470001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.
    Vorontsov M; Filimonov G; Ovchinnikov V; Polnau E; Lachinova S; Weyrauch T; Mangano J
    Appl Opt; 2016 May; 55(15):4170-85. PubMed ID: 27411147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-coupling efficiency of Gaussian Schell model for optical communication through atmospheric turbulence.
    Tan L; Li M; Yang Q; Ma J
    Appl Opt; 2015 Mar; 54(9):2318-25. PubMed ID: 25968517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Satellite-to-ground optical downlink model using mode mismatching multi-mode photonic lanterns.
    Guo W; Li Y; Chen J; Jin T; Jiao S; Wu J; Qiu J; Guo H
    Opt Express; 2023 Oct; 31(21):35041-35053. PubMed ID: 37859245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.