These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27411195)

  • 1. Determination of the full scattering matrix using coherent Fourier scatterometry.
    Kumar N; Cisotto L; Roy S; Ramanandan GK; Pereira SF; Paul Urbach H
    Appl Opt; 2016 Jun; 55(16):4408-13. PubMed ID: 27411195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase retrieval of the full vectorial field applied to coherent Fourier scatterometry.
    Xu X; Konijnenberg AP; Pereira SF; Urbach HP
    Opt Express; 2017 Nov; 25(24):29574-29586. PubMed ID: 29220995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient frequency-domain finite element modeling of two-dimensional elastodynamic scattering.
    Wilcox PD; Velichko A
    J Acoust Soc Am; 2010 Jan; 127(1):155-65. PubMed ID: 20058959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry.
    Kumar N; Petrik P; Ramanandan GK; El Gawhary O; Roy S; Pereira SF; Coene WM; Urbach HP
    Opt Express; 2014 Oct; 22(20):24678-88. PubMed ID: 25322042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical singularity assisted method for accurate parameter detection of step-shaped nanostructure in coherent Fourier scatterometry.
    Dou X; Min C; Zhang Y; Pereira SF; Yuan X
    Opt Express; 2022 Aug; 30(16):29287-29294. PubMed ID: 36299106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct detection of polystyrene equivalent nanoparticles with a diameter of 21 nm (∼λ/19) using coherent Fourier scatterometry.
    Kolenov D; Zadeh IE; Horsten RC; Pereira SF
    Opt Express; 2021 May; 29(11):16487-16505. PubMed ID: 34154211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry.
    Henn MA; Heidenreich S; Gross H; Rathsfeld A; Scholze F; Bär M
    Opt Lett; 2012 Dec; 37(24):5229-31. PubMed ID: 23258061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scatterometry Measurements With Scattered Light Imaging Enable New Insights Into the Nerve Fiber Architecture of the Brain.
    Menzel M; Ritzkowski M; Reuter JA; Gräßel D; Amunts K; Axer M
    Front Neuroanat; 2021; 15():767223. PubMed ID: 34912194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-Free Single-Molecule Imaging with Numerical-Aperture-Shaped Interferometric Scattering Microscopy.
    Cole D; Young G; Weigel A; Sebesta A; Kukura P
    ACS Photonics; 2017 Feb; 4(2):211-216. PubMed ID: 28255572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent Fourier scatterometry reveals nerve fiber crossings in the brain.
    Menzel M; Pereira SF
    Biomed Opt Express; 2020 Aug; 11(8):4735-4758. PubMed ID: 32923075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning techniques applied for the detection of nanoparticles on surfaces using coherent Fourier scatterometry.
    Kolenov D; Pereira SF
    Opt Express; 2020 Jun; 28(13):19163-19186. PubMed ID: 32672200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scattering of a Gaussian beam by an elliptical cylinder using the vectorial complex ray model.
    Jiang K; Han X; Ren KF
    J Opt Soc Am A Opt Image Sci Vis; 2013 Aug; 30(8):1548-56. PubMed ID: 24323213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unified Simulation Platform for Interference Microscopy.
    Hitzelhammer F; Dostálová A; Zykov I; Platzer B; Conrad-Billroth C; Juffmann T; Hohenester U
    ACS Photonics; 2024 Jul; 11(7):2745-2756. PubMed ID: 39036062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields.
    Rodríguez-Herrera OG; Lara D; Dainty C
    Opt Express; 2010 Mar; 18(6):5609-28. PubMed ID: 20389577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering of a focused beam by moving particles.
    Colak S; Yeh C
    Appl Opt; 1980 Jan; 19(2):256-62. PubMed ID: 20216838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linearization of the T-matrix solution for quasi-homogeneous scatterers.
    Valagiannopoulos CA; Tsitsas NL
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):870-81. PubMed ID: 19340261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherence effects in Mie scattering.
    Fischer DG; van Dijk T; Visser TD; Wolf E
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jan; 29(1):78-84. PubMed ID: 22218353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-shot memory-effect video.
    Li X; Stevens A; Greenberg JA; Gehm ME
    Sci Rep; 2018 Sep; 8(1):13402. PubMed ID: 30194338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral shifts and spectral switches of light generated by scattering of arbitrary coherent waves from a quasi-homogeneous media.
    Li J; Chang L
    Opt Express; 2015 Jun; 23(13):16602-16. PubMed ID: 26191673
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.