These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 27411244)
21. Spruce beetle outbreak was not driven by drought stress: Evidence from a tree-ring iso-demographic approach indicates temperatures were more important. Pettit JM; Voelker SL; DeRose RJ; Burton JI Glob Chang Biol; 2020 Oct; 26(10):5829-5843. PubMed ID: 32654317 [TBL] [Abstract][Full Text] [Related]
22. Spatial and remote sensing monitoring shows the end of the bark beetle outbreak on Belgian and north-eastern France Norway spruce (Picea abies) stands. Arthur G; Jonathan L; Juliette C; Nicolas L; Christian P; Hugues C Environ Monit Assess; 2024 Feb; 196(3):226. PubMed ID: 38302669 [TBL] [Abstract][Full Text] [Related]
23. Advances in Semiochemical Repellents to Mitigate Host Mortality From the Spruce Beetle (Coleoptera: Curculionidae). Hansen EM; Munson AS; Wakarchuk D; Blackford DC; Graves AD; Stephens SS; Moan JE J Econ Entomol; 2019 Sep; 112(5):2253-2261. PubMed ID: 31237949 [TBL] [Abstract][Full Text] [Related]
24. Summer and winter drought drive the initiation and spread of spruce beetle outbreak. Hart SJ; Veblen TT; Schneider D; Molotch NP Ecology; 2017 Oct; 98(10):2698-2707. PubMed ID: 28752623 [TBL] [Abstract][Full Text] [Related]
25. Life and death of Picea abies after bark-beetle outbreak: ecological processes driving seedling recruitment. Macek M; Wild J; Kopecký M; Červenka J; Svoboda M; Zenáhlíková J; Brůna J; Mosandl R; Fischer A Ecol Appl; 2017 Jan; 27(1):156-167. PubMed ID: 28052495 [TBL] [Abstract][Full Text] [Related]
26. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA. Schoennagel T; Veblen TT; Negron JF; Smith JM PLoS One; 2012; 7(1):e30002. PubMed ID: 22272268 [TBL] [Abstract][Full Text] [Related]
27. Effectiveness of bifenthrin (Onyx) and carbaryl (Sevin SL) for protecting individual, high-value conifers from bark beetle attack (Coleoptera: Curculionidae: Scolytinae) in the Western United States. Fettig CJ; Allen KK; Borys RR; Christopherson J; Dabney CP; Eager TJ; Gibson KE; Hebertson EG; Long DF; Munson AS; Shea PJ; Smith SL; Haverty MI J Econ Entomol; 2006 Oct; 99(5):1691-8. PubMed ID: 17066800 [TBL] [Abstract][Full Text] [Related]
28. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting. Howell A; Bretfeld M; Belmont E Sci Total Environ; 2021 Mar; 760():144149. PubMed ID: 33341616 [TBL] [Abstract][Full Text] [Related]
29. Vegetation dynamics following compound disturbance in a dry pine forest: fuel treatment then bark beetle outbreak. Crotteau JS; Keyes CR; Hood SM; Larson AJ Ecol Appl; 2020 Mar; 30(2):e02023. PubMed ID: 31628705 [TBL] [Abstract][Full Text] [Related]
30. Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire. Arbellay E; Daniels LD; Mansfield SD; Chang AS Tree Physiol; 2017 Dec; 37(12):1611-1621. PubMed ID: 29121262 [TBL] [Abstract][Full Text] [Related]
31. Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada. James PM; Robert LE; Wotton BM; Martell DL; Fleming RA Ecol Appl; 2017 Mar; 27(2):532-544. PubMed ID: 27809401 [TBL] [Abstract][Full Text] [Related]
32. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests. Kulakowski D; Veblen TT Ecology; 2007 Mar; 88(3):759-69. PubMed ID: 17503603 [TBL] [Abstract][Full Text] [Related]
33. Effects of Site Thermal Variation and Physiography on Flight Synchrony and Phenology of the North American Spruce Beetle (Coleoptera: Curculionidae, Scolytinae) and Associated Species in Colorado. Dell IH; Davis TS Environ Entomol; 2019 Aug; 48(4):998-1011. PubMed ID: 31145459 [TBL] [Abstract][Full Text] [Related]
34. The propagule doesn't fall far from the tree, especially after short-interval, high-severity fire. Gill NS; Hoecker TJ; Turner MG Ecology; 2021 Jan; 102(1):e03194. PubMed ID: 32910502 [TBL] [Abstract][Full Text] [Related]
35. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Seidl R; Donato DC; Raffa KF; Turner MG Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13075-13080. PubMed ID: 27821739 [TBL] [Abstract][Full Text] [Related]
36. Carbon isotopic composition of forest soil respiration in the decade following bark beetle and stem girdling disturbances in the Rocky Mountains. Maurer GE; Chan AM; Trahan NA; Moore DJ; Bowling DR Plant Cell Environ; 2016 Jul; 39(7):1513-23. PubMed ID: 26824577 [TBL] [Abstract][Full Text] [Related]
37. Engelmann Spruce Chemotypes in Colorado and their Effects on Symbiotic Fungi Associated with the North American Spruce Beetle. Davis TS; Horne FB; Yetter JC; Stewart JE J Chem Ecol; 2018 Jun; 44(6):601-610. PubMed ID: 29679267 [TBL] [Abstract][Full Text] [Related]
39. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon. Preisler HK; Hicke JA; Ager AA; Hayes JL Ecology; 2012 Nov; 93(11):2421-34. PubMed ID: 23236913 [TBL] [Abstract][Full Text] [Related]
40. Climate factors associated with historic spruce beetle (Coleoptera: Curculionidae) outbreaks in Utah and Colorado. Hebertson EG; Jenkins MJ Environ Entomol; 2008 Apr; 37(2):281-92. PubMed ID: 18419898 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]