These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 27411282)
1. [DEVELOPMENT OF HYPOXIA-INDUCIBLE FACTOR 1α IN TISSUE ENGINEERED ANGIOGENESIS AND OSTEOGENESIS]. Zhang D; Ren L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):504-8. PubMed ID: 27411282 [TBL] [Abstract][Full Text] [Related]
2. [Comparative study on osteogenic effect of bone marrow mesenchymal stem cells transfected by adenovirus-bone morphogenetic protein 2-internal ribosome entry site-hypoxia inducible factor 1alpha(mu) and by bone morphogenetic protein 2 single gene]. Zhang J; Yuan H; Li C; Li Q; Guo W; Liu D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Sep; 26(9):1102-6. PubMed ID: 23057358 [TBL] [Abstract][Full Text] [Related]
3. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Li H; Liu D; Li C; Zhou S; Tian D; Xiao D; Zhang H; Gao F; Huang J Cell Biol Int; 2017 Dec; 41(12):1379-1390. PubMed ID: 28877384 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of Hif-1α in Mesenchymal Stem Cells Affects Cell-Autonomous Angiogenic and Osteogenic Parameters. Lampert FM; Kütscher C; Stark GB; Finkenzeller G J Cell Biochem; 2016 Mar; 117(3):760-8. PubMed ID: 26365321 [TBL] [Abstract][Full Text] [Related]
5. Hypoxia-inducible factor 1Α may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Costa V; Raimondi L; Conigliaro A; Salamanna F; Carina V; De Luca A; Bellavia D; Alessandro R; Fini M; Giavaresi G Cytotherapy; 2017 Dec; 19(12):1412-1425. PubMed ID: 29111380 [TBL] [Abstract][Full Text] [Related]
6. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Zou D; Zhang Z; He J; Zhang K; Ye D; Han W; Zhou J; Wang Y; Li Q; Liu X; Zhang X; Wang S; Hu J; Zhu C; Zhang W; zhou Y; Fu H; Huang Y; Jiang X Biomaterials; 2012 Mar; 33(7):2097-108. PubMed ID: 22172336 [TBL] [Abstract][Full Text] [Related]
7. In vitro study of enhanced osteogenesis induced by HIF-1α-transduced bone marrow stem cells. Zou D; Han W; You S; Ye D; Wang L; Wang S; Zhao J; Zhang W; Jiang X; Zhang X; Huang Y Cell Prolif; 2011 Jun; 44(3):234-43. PubMed ID: 21535264 [TBL] [Abstract][Full Text] [Related]
8. 3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis. Min Z; Shichang Z; Chen X; Yufang Z; Changqing Z Biomater Sci; 2015 Aug; 3(8):1236-44. PubMed ID: 26222039 [TBL] [Abstract][Full Text] [Related]
9. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. Peng J; Lai ZG; Fang ZL; Xing S; Hui K; Hao C; Jin Q; Qi Z; Shen WJ; Dong QN; Bing ZH; Fu DL PLoS One; 2014; 9(11):e112744. PubMed ID: 25394221 [TBL] [Abstract][Full Text] [Related]
10. Application of HIF-1α by gene therapy enhances angiogenesis and osteogenesis in alveolar bone defect regeneration. Zhang Y; Huang J; Wang C; Zhang Y; Hu C; Li G; Xu L J Gene Med; 2016 Apr; 18(4-6):57-64. PubMed ID: 26929250 [TBL] [Abstract][Full Text] [Related]
11. HIF-1α is upregulated in human mesenchymal stem cells. Palomäki S; Pietilä M; Laitinen S; Pesälä J; Sormunen R; Lehenkari P; Koivunen P Stem Cells; 2013 Sep; 31(9):1902-9. PubMed ID: 23744828 [TBL] [Abstract][Full Text] [Related]
12. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Wu C; Zhou Y; Chang J; Xiao Y Acta Biomater; 2013 Nov; 9(11):9159-68. PubMed ID: 23811216 [TBL] [Abstract][Full Text] [Related]
13. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Bai J; Li L; Kou N; Bai Y; Zhang Y; Lu Y; Gao L; Wang F Stem Cell Res Ther; 2021 Aug; 12(1):432. PubMed ID: 34344474 [TBL] [Abstract][Full Text] [Related]
15. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor-1α pathway. Niu X; Chen Y; Qi L; Liang G; Wang Y; Zhang L; Qu Y; Wang W Cytokine; 2019 Jan; 113():117-127. PubMed ID: 29934049 [TBL] [Abstract][Full Text] [Related]
16. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis. Jia P; Chen H; Kang H; Qi J; Zhao P; Jiang M; Guo L; Zhou Q; Qian ND; Zhou HB; Xu YJ; Fan Y; Deng LF J Biomed Mater Res A; 2016 Oct; 104(10):2515-27. PubMed ID: 27227768 [TBL] [Abstract][Full Text] [Related]
17. Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1α. Zou D; Zhang Z; Ye D; Tang A; Deng L; Han W; Zhao J; Wang S; Zhang W; Zhu C; Zhou J; He J; Wang Y; Xu F; Huang Y; Jiang X Stem Cells; 2011 Sep; 29(9):1380-90. PubMed ID: 21774039 [TBL] [Abstract][Full Text] [Related]
18. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Ding H; Gao YS; Wang Y; Hu C; Sun Y; Zhang C Stem Cells Dev; 2014 May; 23(9):990-1000. PubMed ID: 24328551 [TBL] [Abstract][Full Text] [Related]
19. Dimethyloxaloylglycine improves angiogenic activity of bone marrow stromal cells in the tissue-engineered bone. Ding H; Chen S; Song WQ; Gao YS; Guan JJ; Wang Y; Sun Y; Zhang CQ Int J Biol Sci; 2014; 10(7):746-56. PubMed ID: 25013382 [TBL] [Abstract][Full Text] [Related]
20. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. Kanichai M; Ferguson D; Prendergast PJ; Campbell VA J Cell Physiol; 2008 Sep; 216(3):708-15. PubMed ID: 18366089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]