These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 27411298)

  • 1. Quantum-critical fluctuations in 2D metals: strange metals and superconductivity in antiferromagnets and in cuprates.
    Varma CM
    Rep Prog Phys; 2016 Aug; 79(8):082501. PubMed ID: 27411298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Criticality in Quasi-Two-Dimensional Itinerant Antiferromagnets.
    Varma CM
    Phys Rev Lett; 2015 Oct; 115(18):186405. PubMed ID: 26565482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Itinerant quantum critical point with fermion pockets and hotspots.
    Liu ZH; Pan G; Xu XY; Sun K; Meng ZY
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16760-16767. PubMed ID: 31371512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates.
    Bok JM; Bae JJ; Choi HY; Varma CM; Zhang W; He J; Zhang Y; Yu L; Zhou XJ
    Sci Adv; 2016 Mar; 2(3):e1501329. PubMed ID: 26973872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous density fluctuations in a strange metal.
    Mitrano M; Husain AA; Vig S; Kogar A; Rak MS; Rubeck SI; Schmalian J; Uchoa B; Schneeloch J; Zhong R; Gu GD; Abbamonte P
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5392-5396. PubMed ID: 29735712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials.
    Sachdev S; Metlitski MA; Punk M
    J Phys Condens Matter; 2012 Jul; 24(29):294205. PubMed ID: 22773369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear resistivity and Sachdev-Ye-Kitaev (SYK) spin liquid behavior in a quantum critical metal with spin-1/2 fermions.
    Cha P; Wentzell N; Parcollet O; Georges A; Kim EA
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18341-18346. PubMed ID: 32699148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations on the mechanisms and transition temperatures of superconductivity induced by electronic fluctuations.
    Varma CM
    Rep Prog Phys; 2012 May; 75(5):052501. PubMed ID: 22790584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic signatures of quantum criticality in cuprate superconductors.
    Michon B; Girod C; Badoux S; Kačmarčík J; Ma Q; Dragomir M; Dabkowska HA; Gaulin BD; Zhou JS; Pyon S; Takayama T; Takagi H; Verret S; Doiron-Leyraud N; Marcenat C; Taillefer L; Klein T
    Nature; 2019 Mar; 567(7747):218-222. PubMed ID: 30760922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous quantum criticality in the electron-doped cuprates.
    Mandal PR; Sarkar T; Greene RL
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5991-5994. PubMed ID: 30862739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological order, emergent gauge fields, and Fermi surface reconstruction.
    Sachdev S
    Rep Prog Phys; 2019 Jan; 82(1):014001. PubMed ID: 30210062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-Critical Resistivity of Strange Metals in a Magnetic Field.
    Varma CM
    Phys Rev Lett; 2022 May; 128(20):206601. PubMed ID: 35657895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point.
    Lederer S; Schattner Y; Berg E; Kivelson SA
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4905-4910. PubMed ID: 28439023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of angle-dependent marginal Fermi liquid self-energy and its existence at all dopings in cuprates.
    Ray S; Das T
    J Phys Condens Matter; 2019 Sep; 31(36):365603. PubMed ID: 31146268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
    Steglich F; Wirth S
    Rep Prog Phys; 2016 Aug; 79(8):084502. PubMed ID: 27376190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metals.
    Steglich F; Arndt J; Stockert O; Friedemann S; Brando M; Klingner C; Krellner C; Geibel C; Wirth S; Kirchner S; Si Q
    J Phys Condens Matter; 2012 Jul; 24(29):294201. PubMed ID: 22773300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the elementary excitations in high-T(c) cuprates: explanation of the new energy scale observed by angle-resolved photoemission spectroscopy.
    Manske D; Eremin I; Bennemann KH
    Phys Rev Lett; 2001 Oct; 87(17):177005. PubMed ID: 11690298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realistic estimates of superconducting properties for the cuprates: reciprocal-space diagrammatic expansion combined with variational approach.
    Fidrysiak M; Zegrodnik M; Spałek J
    J Phys Condens Matter; 2018 Nov; 30(47):475602. PubMed ID: 30382027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of overdamped bosonic modes and transport in strange metals.
    Patel AA; Lunts P; Sachdev S
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2402052121. PubMed ID: 38551843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Fermi liquid phase and linear-in-temperature scattering rate in overdoped two-dimensional Hubbard model.
    Wú W; Wang X; Tremblay AM
    Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2115819119. PubMed ID: 35320041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.