BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27411540)

  • 21. An efficient rose bengal based nanoplatform for photodynamic therapy.
    Gianotti E; Martins Estevão B; Cucinotta F; Hioka N; Rizzi M; Renò F; Marchese L
    Chemistry; 2014 Aug; 20(35):10921-5. PubMed ID: 25116185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines.
    El-Hussein A; Mfouo-Tynga I; Abdel-Harith M; Abrahamse H
    J Photochem Photobiol B; 2015 Dec; 153():67-75. PubMed ID: 26398813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers.
    Scholz M; Dědic R; Breitenbach T; Hála J
    Photochem Photobiol Sci; 2013 Oct; 12(10):1873-84. PubMed ID: 23949211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and theoretical investigation of water-soluble silicon(IV) phthalocyanine and its interaction with bovine serum albumin.
    Al-Raqa SY; Khezami K; Kaya EN; Kocak A; Durmuş M
    J Biol Inorg Chem; 2021 May; 26(2-3):235-247. PubMed ID: 33558997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibacterial efficacy of photosensitizer functionalized biopolymeric nanoparticles in the presence of tissue inhibitors in root canal.
    Shrestha A; Kishen A
    J Endod; 2014 Apr; 40(4):566-70. PubMed ID: 24666913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania.
    Nadhman A; Nazir S; Khan MI; Arooj S; Bakhtiar M; Shahnaz G; Yasinzai M
    Free Radic Biol Med; 2014 Dec; 77():230-8. PubMed ID: 25266330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light.
    Turan IS; Yildiz D; Turksoy A; Gunaydin G; Akkaya EU
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2875-8. PubMed ID: 26799149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene oxide-incorporated pH-responsive folate-albumin-photosensitizer nanocomplex as image-guided dual therapeutics.
    Battogtokh G; Ko YT
    J Control Release; 2016 Jul; 234():10-20. PubMed ID: 27164545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diketopyrrolopyrrole-porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy.
    Schmitt J; Heitz V; Sour A; Bolze F; Ftouni H; Nicoud JF; Flamigni L; Ventura B
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):169-73. PubMed ID: 25370127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy.
    Meng Z; Hou W; Zhou H; Zhou L; Chen H; Wu C
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29251383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite.
    Shitomi K; Miyaji H; Miyata S; Sugaya T; Ushijima N; Akasaka T; Kawasaki H
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101647. PubMed ID: 31904554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS
    Younis MR; An R; Wang Y; He G; Gurram B; Wang S; Lin J; Ye D; Huang P; Xia XH
    ACS Appl Bio Mater; 2022 Feb; 5(2):747-760. PubMed ID: 35040617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching.
    Sève A; Couleaud P; Lux F; Tillement O; Arnoux P; André JC; Frochot C
    Photochem Photobiol Sci; 2012 May; 11(5):803-11. PubMed ID: 22362130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of hematoporphyrin IX potential for photodynamic therapy by entrapment in silica nanospheres.
    Silva PR; Vono LL; Espósito BP; Baptista MS; Rossi LM
    Phys Chem Chem Phys; 2011 Sep; 13(33):14946-52. PubMed ID: 21769362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro demonstration of the heavy-atom effect for photodynamic therapy.
    Gorman A; Killoran J; O'Shea C; Kenna T; Gallagher WM; O'Shea DF
    J Am Chem Soc; 2004 Sep; 126(34):10619-31. PubMed ID: 15327320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization.
    Giménez RE; Vargová V; Rey V; Turbay MB; Abatedaga I; Morán Vieyra FE; Paz Zanini VI; Mecchia Ortiz JH; Katz NE; Ostatná V; Borsarelli CD
    Free Radic Biol Med; 2016 May; 94():99-109. PubMed ID: 26898504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy.
    Li B; Lin L; Lin H; Wilson BC
    J Biophotonics; 2016 Dec; 9(11-12):1314-1325. PubMed ID: 27136270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy.
    Kim KR; Bang D; Ahn DR
    Biomater Sci; 2016 Apr; 4(4):605-9. PubMed ID: 26674121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photosensitizer that selectively generates singlet oxygen in nonpolar environments: photophysical mechanism and efficiency for a covalent BODIPY dimer.
    Zhang XF; Yang X
    J Phys Chem B; 2013 Aug; 117(30):9050-5. PubMed ID: 23837434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-photon excitation nanoparticles for photodynamic therapy.
    Shen Y; Shuhendler AJ; Ye D; Xu JJ; Chen HY
    Chem Soc Rev; 2016 Dec; 45(24):6725-6741. PubMed ID: 27711672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.