These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 27411949)
21. The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration. Shen W; Chen X; Chen J; Yin Z; Heng BC; Chen W; Ouyang HW Biomaterials; 2010 Oct; 31(28):7239-49. PubMed ID: 20615544 [TBL] [Abstract][Full Text] [Related]
22. Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets. Higa K; Takeshima N; Moro F; Kawakita T; Kawashima M; Demura M; Shimazaki J; Asakura T; Tsubota K; Shimmura S J Biomater Sci Polym Ed; 2011; 22(17):2261-76. PubMed ID: 21092419 [TBL] [Abstract][Full Text] [Related]
23. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D. Bäcker A; Erhardt O; Wietbrock L; Schel N; Göppert B; Dirschka M; Abaffy P; Sollich T; Cecilia A; Gruhl FJ Biopolymers; 2017 Feb; 107(2):70-79. PubMed ID: 27696348 [TBL] [Abstract][Full Text] [Related]
24. Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Lu Q; Zhang X; Hu X; Kaplan DL Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684 [TBL] [Abstract][Full Text] [Related]
25. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
26. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. Yang JW; Zhang YF; Sun ZY; Song GT; Chen Z J Biomater Appl; 2015 Aug; 30(2):221-9. PubMed ID: 25791684 [TBL] [Abstract][Full Text] [Related]
27. Artificial skin--culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. Wendt H; Hillmer A; Reimers K; Kuhbier JW; Schäfer-Nolte F; Allmeling C; Kasper C; Vogt PM PLoS One; 2011; 6(7):e21833. PubMed ID: 21814557 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of duck's feet collagen-silk hybrid biomaterial for tissue engineering. Kim SH; Park HS; Lee OJ; Chao JR; Park HJ; Lee JM; Ju HW; Moon BM; Park YR; Song JE; Khang G; Park CH Int J Biol Macromol; 2016 Apr; 85():442-50. PubMed ID: 26748068 [TBL] [Abstract][Full Text] [Related]
29. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319 [TBL] [Abstract][Full Text] [Related]
30. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Park YR; Ju HW; Lee JM; Kim DK; Lee OJ; Moon BM; Park HJ; Jeong JY; Yeon YK; Park CH Int J Biol Macromol; 2016 Dec; 93(Pt B):1567-1574. PubMed ID: 27431792 [TBL] [Abstract][Full Text] [Related]
31. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds. Soares JS; Zhang W; Sacks MS Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987 [TBL] [Abstract][Full Text] [Related]
32. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds. Li SL; Liu Y; Hui L J Tissue Eng Regen Med; 2015 Dec; 9(12):E267-75. PubMed ID: 23509085 [TBL] [Abstract][Full Text] [Related]
33. [Recent progress on silk fibroin as tissue engineering biomaterials]. Wang H; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617 [TBL] [Abstract][Full Text] [Related]
34. Fabrication and characterization of nano-fibrous bilayer composite for skin regeneration application. Arasteh S; Kazemnejad S; Khanjani S; Heidari-Vala H; Akhondi MM; Mobini S Methods; 2016 Apr; 99():3-12. PubMed ID: 26318088 [TBL] [Abstract][Full Text] [Related]
35. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds. Gupta V; Davis G; Gordon A; Altman AM; Reece GP; Gascoyne PR; Mathur AB J Biomed Mater Res A; 2010 Aug; 94(2):515-23. PubMed ID: 20186770 [TBL] [Abstract][Full Text] [Related]
36. In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration. Musson DS; Naot D; Chhana A; Matthews BG; McIntosh JD; Lin ST; Choi AJ; Callon KE; Dunbar PR; Lesage S; Coleman B; Cornish J Tissue Eng Part A; 2015 May; 21(9-10):1539-51. PubMed ID: 25604072 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Park HJ; Lee OJ; Lee MC; Moon BM; Ju HW; Lee Jm; Kim JH; Kim DW; Park CH Int J Biol Macromol; 2015; 78():215-23. PubMed ID: 25849999 [TBL] [Abstract][Full Text] [Related]
38. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Mauney JR; Nguyen T; Gillen K; Kirker-Head C; Gimble JM; Kaplan DL Biomaterials; 2007 Dec; 28(35):5280-90. PubMed ID: 17765303 [TBL] [Abstract][Full Text] [Related]
39. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
40. Attachment, Viability and Adipodifferentiation of Pre-adipose Cells on Silk Scaffolds with and Without Co-expressed FGF-2 and VEGF. Hanken H; Göhler F; Smeets R; Heiland M; Gröbe A; Friedrich RE; Busch P; Blessmann M; Kluwe L; Hartjen P In Vivo; 2016 09-10; 30(5):567-72. PubMed ID: 27566073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]