These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 27412003)

  • 41. History-Dependent Odor Processing in the Mouse Olfactory Bulb.
    Vinograd A; Livneh Y; Mizrahi A
    J Neurosci; 2017 Dec; 37(49):12018-12030. PubMed ID: 29109236
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Associative olfactory learning of honeybees to differential rewards in multiple contexts--effect of odor component and mixture similarity.
    Paldi N; Zilber S; Shafir S
    J Chem Ecol; 2003 Nov; 29(11):2515-38. PubMed ID: 14682531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Appetitive but not aversive olfactory conditioning modifies antennal movements in honeybees.
    Cholé H; Junca P; Sandoz JC
    Learn Mem; 2015 Dec; 22(12):604-16. PubMed ID: 26572651
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Classification of odorants across layers in locust olfactory pathway.
    Sanda P; Kee T; Gupta N; Stopfer M; Bazhenov M
    J Neurophysiol; 2016 May; 115(5):2303-16. PubMed ID: 26864765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.
    Kropf J; Rössler W
    PLoS One; 2018; 13(1):e0191425. PubMed ID: 29351552
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novelty detection in early olfactory processing of the honey bee, Apis mellifera.
    Lei H; Haney S; Jernigan CM; Guo X; Cook CN; Bazhenov M; Smith BH
    PLoS One; 2022; 17(3):e0265009. PubMed ID: 35353837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Associative learning modifies neural representations of odors in the insect brain.
    Faber T; Joerges J; Menzel R
    Nat Neurosci; 1999 Jan; 2(1):74-8. PubMed ID: 10195183
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environment-specific modulation of odorant representations in the honeybee brain.
    Chakroborty NK; Menzel R; Schubert M
    Eur J Neurosci; 2016 Dec; 44(12):3080-3093. PubMed ID: 27748970
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural Encoding of Odors during Active Sampling and in Turbulent Plumes.
    Huston SJ; Stopfer M; Cassenaer S; Aldworth ZN; Laurent G
    Neuron; 2015 Oct; 88(2):403-18. PubMed ID: 26456047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Octopamine modulates activity of neural networks in the honey bee antennal lobe.
    Rein J; Mustard JA; Strauch M; Smith BH; Galizia CG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):947-62. PubMed ID: 23681219
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Orbital cortex neuronal responses during an odor-based conditioned associative task in rats.
    Yonemori M; Nishijo H; Uwano T; Tamura R; Furuta I; Kawasaki M; Takashima Y; Ono T
    Neuroscience; 2000; 95(3):691-703. PubMed ID: 10670436
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasticity in inhibitory networks improves pattern separation in early olfactory processing.
    Joshi S; Haney S; Wang Z; Locatelli F; Cao Y; Smith B; Bazhenov M
    bioRxiv; 2024 Jul; ():. PubMed ID: 38328149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Early olfactory experience induces structural changes in the primary olfactory center of an insect brain.
    Arenas A; Giurfa M; Sandoz JC; Hourcade B; Devaud JM; Farina WM
    Eur J Neurosci; 2012 Mar; 35(5):682-90. PubMed ID: 22300014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional integration of a serotonergic neuron in the Drosophila antennal lobe.
    Zhang X; Gaudry Q
    Elife; 2016 Aug; 5():. PubMed ID: 27572257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The olfactory tubercle encodes odor valence in behaving mice.
    Gadziola MA; Tylicki KA; Christian DL; Wesson DW
    J Neurosci; 2015 Mar; 35(11):4515-27. PubMed ID: 25788670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible categorization in the mouse olfactory bulb.
    Kudryavitskaya E; Marom E; Shani-Narkiss H; Pash D; Mizrahi A
    Curr Biol; 2021 Apr; 31(8):1616-1631.e4. PubMed ID: 33571434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential coding by two olfactory subsystems in the honeybee brain.
    Carcaud J; Hill T; Giurfa M; Sandoz JC
    J Neurophysiol; 2012 Aug; 108(4):1106-21. PubMed ID: 22572948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Excitatory local interneurons enhance tuning of sensory information.
    Assisi C; Stopfer M; Bazhenov M
    PLoS Comput Biol; 2012; 8(7):e1002563. PubMed ID: 22807661
    [TBL] [Abstract][Full Text] [Related]  

  • 59. De Novo Emergence of Odor Category Representations in the Human Brain.
    Qu LP; Kahnt T; Cole SM; Gottfried JA
    J Neurosci; 2016 Jan; 36(2):468-78. PubMed ID: 26758838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ring-shaped odor coding in the antennal lobe of migratory locusts.
    Jiang X; Dimitriou E; Grabe V; Sun R; Chang H; Zhang Y; Gershenzon J; Rybak J; Hansson BS; Sachse S
    Cell; 2024 Jul; 187(15):3973-3991.e24. PubMed ID: 38897195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.