These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27412052)

  • 41. Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization.
    Fan Z; Tao X; Cui X; Fan X; Zhang X; Dong L
    Nanoscale; 2012 Sep; 4(18):5673-9. PubMed ID: 22875447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range.
    Jacassi A; Bozzola A; Zilio P; Tantussi F; De Angelis F
    Sci Rep; 2016 Jun; 6():28738. PubMed ID: 27345517
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna.
    Cazier N; Buret M; Uskov AV; Markey L; Arocas J; Colas Des Francs G; Bouhelier A
    Opt Express; 2016 Feb; 24(4):3873-84. PubMed ID: 26907040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fundamental Scaling Laws in Nanophotonics.
    Liu K; Sun S; Majumdar A; Sorger VJ
    Sci Rep; 2016 Nov; 6():37419. PubMed ID: 27869159
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tuning of nonvolatile bipolar memristive switching in Co(III) polymer with an extended azo aromatic ligand.
    Bandyopadhyay A; Sahu S; Higuchi M
    J Am Chem Soc; 2011 Feb; 133(5):1168-71. PubMed ID: 21210686
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 7 nm/V DC tunability and millivolt scale switching in silicon carrier injection degenerate band edge resonators.
    Wood MG; Burr JR; Reano RM
    Opt Express; 2016 Oct; 24(20):23481-23493. PubMed ID: 27828411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.
    Fairfield JA; Rocha CG; O'Callaghan C; Ferreira MS; Boland JJ
    Nanoscale; 2016 Nov; 8(43):18516-18523. PubMed ID: 27782246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct observation of electron propagation and dielectric screening on the atomic length scale.
    Neppl S; Ernstorfer R; Cavalieri AL; Lemell C; Wachter G; Magerl E; Bothschafter EM; Jobst M; Hofstetter M; Kleineberg U; Barth JV; Menzel D; Burgdörfer J; Feulner P; Krausz F; Kienberger R
    Nature; 2015 Jan; 517(7534):342-6. PubMed ID: 25592539
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct observations of local electronic states in an Al-based quasicrystal by STEM-EELS.
    Seki T; Abe E
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i17-i18. PubMed ID: 25359809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Broad-band high-gain room temperature photodetectors using semiconductor-metal nanofloret hybrids with wide plasmonic response.
    Ziv A; Tzaguy A; Sun Z; Yochelis S; Stratakis E; Kenanakis G; Schatz GC; Lauhon LJ; Seidman DN; Paltiel Y; Yerushalmi R
    Nanoscale; 2019 Mar; 11(13):6368-6376. PubMed ID: 30888369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extremely confined gap surface-plasmon modes excited by electrons.
    Raza S; Stenger N; Pors A; Holmgaard T; Kadkhodazadeh S; Wagner JB; Pedersen K; Wubs M; Bozhevolnyi SI; Mortensen NA
    Nat Commun; 2014 Jun; 5():4125. PubMed ID: 24939641
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical probes of molecules as nano-mechanical switches.
    Kos D; Di Martino G; Boehmke A; de Nijs B; Berta D; Földes T; Sangtarash S; Rosta E; Sadeghi H; Baumberg JJ
    Nat Commun; 2020 Nov; 11(1):5905. PubMed ID: 33219231
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping.
    He X; Tang J; Hu H; Shi J; Guan Z; Zhang S; Xu H
    ACS Nano; 2019 Dec; 13(12):14041-14047. PubMed ID: 31738504
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ electron energy-loss spectroscopy in liquids.
    Holtz ME; Yu Y; Gao J; Abruña HD; Muller DA
    Microsc Microanal; 2013 Aug; 19(4):1027-35. PubMed ID: 23721691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coupling of light from microdisk lasers into plasmonic nano-antennas.
    Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M
    Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probing physical properties of confined fluids within individual nanobubbles.
    Taverna D; Kociak M; Stéphan O; Fabre A; Finot E; Décamps B; Colliex C
    Phys Rev Lett; 2008 Jan; 100(3):035301. PubMed ID: 18232994
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlated structural-optical study of single nanocrystals in a gap-bar antenna: effects of plasmonics on excitonic recombination pathways.
    Wang F; Karan NS; Nguyen HM; Ghosh Y; Sheehan CJ; Hollingsworth JA; Htoon H
    Nanoscale; 2015 Jun; 7(21):9387-93. PubMed ID: 25947939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.