These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27412355)

  • 1. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.
    Nguyen TP; Tran BM; Lee NY
    Lab Chip; 2016 Aug; 16(17):3251-9. PubMed ID: 27412355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step surface modification for irreversible bonding of various plastics with a poly(dimethylsiloxane) elastomer at room temperature.
    Wu J; Lee NY
    Lab Chip; 2014 May; 14(9):1564-71. PubMed ID: 24632757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.
    Tang L; Lee NY
    Lab Chip; 2010 May; 10(10):1274-80. PubMed ID: 20445880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instantaneous room temperature bonding of a wide range of non-silicon substrates with poly(dimethylsiloxane) (PDMS) elastomer mediated by a mercaptosilane.
    Wu W; Wu J; Kim JH; Lee NY
    Lab Chip; 2015 Jul; 15(13):2819-25. PubMed ID: 26014886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane).
    Sunkara V; Park DK; Hwang H; Chantiwas R; Soper SA; Cho YK
    Lab Chip; 2011 Mar; 11(5):962-5. PubMed ID: 21152492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel poly(dimethylsiloxane) bonding strategy via room temperature "chemical gluing".
    Lee NY; Chung BH
    Langmuir; 2009 Apr; 25(6):3861-6. PubMed ID: 19708157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functionally integrated thermoplastic microdevice for one-step solid-phase-based nucleic acid purification and isothermal amplification for facile detection of foodborne pathogen.
    Ha ML; Zhang Y; Lee NY
    Biotechnol Bioeng; 2016 Dec; 113(12):2614-2623. PubMed ID: 27260386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically robust succinimide-group-assisted irreversible bonding of poly(dimethylsiloxane)-thermoplastic microfluidic devices at room temperature.
    Sivakumar R; Lee NY
    Analyst; 2020 Oct; 145(21):6887-6894. PubMed ID: 32820755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics.
    Lee KS; Ram RJ
    Lab Chip; 2009 Jun; 9(11):1618-24. PubMed ID: 19458871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel carboxyl-amine bonding methods for poly(dimethylsiloxane)-based devices.
    Ouellet E; Yang CW; Lin T; Yang LL; Lagally ET
    Langmuir; 2010 Jul; 26(14):11609-14. PubMed ID: 20575547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid elastomer-plastic microfluidic device as a convenient model for mimicking the blood-brain barrier in vitro.
    Nguyen PQH; Duong DD; Kwun JD; Lee NY
    Biomed Microdevices; 2019 Nov; 21(4):90. PubMed ID: 31686217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat and pressure-resistant room temperature irreversible sealing of hybrid PDMS-thermoplastic microfluidic devices
    Sivakumar R; Trinh KTL; Lee NY
    RSC Adv; 2020 Apr; 10(28):16502-16509. PubMed ID: 35498866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens.
    La HC; Lee NY
    Biomed Microdevices; 2019 Jul; 21(3):72. PubMed ID: 31286242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Modification of PDMS and Plastics with Zwitterionic Polymers.
    Tanaka M; Kurosawa S
    J Oleo Sci; 2017 Jul; 66(7):699-704. PubMed ID: 28626142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the mechanism of aminosilane-mediated bonding of thermoplastics and poly(dimethylsiloxane).
    Sunkara V; Cho YK
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6537-44. PubMed ID: 23198791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step DNA purification and amplification on an integrated plastic microdevice for on-site identification of foodborne pathogens.
    Trinh KTL; Zhang Y; Lee NY
    Anal Chim Acta; 2018 Dec; 1040():63-73. PubMed ID: 30327114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature bonding for plastic high-pressure microfluidic chips.
    Mair DA; Rolandi M; Snauko M; Noroski R; Svec F; Fréchet JM
    Anal Chem; 2007 Jul; 79(13):5097-102. PubMed ID: 17530818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis.
    Vickers JA; Caulum MM; Henry CS
    Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully Integrated and Foldable Microdevice Encapsulated with Agarose for Long-Term Storage Potential for Point-of-Care Testing of Multiplex Foodborne Pathogens.
    Trinh TND; La HC; Lee NY
    ACS Sens; 2019 Oct; 4(10):2754-2762. PubMed ID: 31502446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.