These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 27412712)
1. Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait. Iakovidis M; Teixeira PJ; Exposito-Alonso M; Cowper MG; Law TF; Liu Q; Vu MC; Dang TM; Corwin JA; Weigel D; Dangl JL; Grant SR Genetics; 2016 Sep; 204(1):337-53. PubMed ID: 27412712 [TBL] [Abstract][Full Text] [Related]
2. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Goel AK; Lundberg D; Torres MA; Matthews R; Akimoto-Tomiyama C; Farmer L; Dangl JL; Grant SR Mol Plant Microbe Interact; 2008 Mar; 21(3):361-70. PubMed ID: 18257685 [TBL] [Abstract][Full Text] [Related]
3. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Sohn KH; Lei R; Nemri A; Jones JD Plant Cell; 2007 Dec; 19(12):4077-90. PubMed ID: 18165328 [TBL] [Abstract][Full Text] [Related]
4. The genetic basis of quantitative variation in susceptibility of Arabidopsis thaliana to Pseudomonas syringae (Pst DC3000): evidence for a new genetic factor of large effect. Kover PX; Cheverud J New Phytol; 2007; 174(1):172-181. PubMed ID: 17335507 [TBL] [Abstract][Full Text] [Related]
5. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Birker D; Heidrich K; Takahara H; Narusaka M; Deslandes L; Narusaka Y; Reymond M; Parker JE; O'Connell R Plant J; 2009 Nov; 60(4):602-13. PubMed ID: 19686535 [TBL] [Abstract][Full Text] [Related]
6. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana. Velásquez AC; Oney M; Huot B; Xu S; He SY New Phytol; 2017 Jun; 214(4):1673-1687. PubMed ID: 28295393 [TBL] [Abstract][Full Text] [Related]
8. HopA1 Effector from Dahale SK; Ghosh D; Ingole KD; Chugani A; Kim SH; Bhattacharjee S Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299060 [No Abstract] [Full Text] [Related]
9. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. Fabro G; Steinbrenner J; Coates M; Ishaque N; Baxter L; Studholme DJ; Körner E; Allen RL; Piquerez SJ; Rougon-Cardoso A; Greenshields D; Lei R; Badel JL; Caillaud MC; Sohn KH; Van den Ackerveken G; Parker JE; Beynon J; Jones JD PLoS Pathog; 2011 Nov; 7(11):e1002348. PubMed ID: 22072967 [TBL] [Abstract][Full Text] [Related]
10. Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana. Ahmad S; Van Hulten M; Martin J; Pieterse CM; Van Wees SC; Ton J Plant Cell Environ; 2011 Jul; 34(7):1191-206. PubMed ID: 21414016 [TBL] [Abstract][Full Text] [Related]
11. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415 [TBL] [Abstract][Full Text] [Related]
12. A phytobacterial TIR domain effector manipulates NAD Eastman S; Smith T; Zaydman MA; Kim P; Martinez S; Damaraju N; DiAntonio A; Milbrandt J; Clemente TE; Alfano JR; Guo M New Phytol; 2022 Jan; 233(2):890-904. PubMed ID: 34657283 [TBL] [Abstract][Full Text] [Related]
13. The bacterial type III-secreted protein AvrRps4 is a bipartite effector. Halane MK; Kim SH; Spears BJ; Garner CM; Rogan CJ; Okafor EC; Su J; Bhattacharjee S; Gassmann W PLoS Pathog; 2018 Mar; 14(3):e1006984. PubMed ID: 29601603 [TBL] [Abstract][Full Text] [Related]
14. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. Lewis JD; Wu R; Guttman DS; Desveaux D PLoS Genet; 2010 Apr; 6(4):e1000894. PubMed ID: 20368970 [TBL] [Abstract][Full Text] [Related]
15. Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae. Kover PX; Wolf JB; Kunkel BN; Cheverud JM Heredity (Edinb); 2005 May; 94(5):507-17. PubMed ID: 15770233 [TBL] [Abstract][Full Text] [Related]
16. Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana. Perchepied L; Kroj T; Tronchet M; Loudet O; Roby D PLoS One; 2006 Dec; 1(1):e123. PubMed ID: 17205127 [TBL] [Abstract][Full Text] [Related]
17. Natural variation in RPS2-mediated resistance among Arabidopsis accessions: correlation between gene expression profiles and phenotypic responses. Van Poecke RM; Sato M; Lenarz-Wyatt L; Weisberg S; Katagiri F Plant Cell; 2007 Dec; 19(12):4046-60. PubMed ID: 18083910 [TBL] [Abstract][Full Text] [Related]
18. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Underwood W; Zhang S; He SY Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704 [TBL] [Abstract][Full Text] [Related]
19. Genetic dissection of basal resistance to Pseudomonas syringae pv. phaseolicola in accessions of Arabidopsis. Forsyth A; Mansfield JW; Grabov N; de Torres M; Sinapidou E; Grant MR Mol Plant Microbe Interact; 2010 Dec; 23(12):1545-52. PubMed ID: 20653411 [TBL] [Abstract][Full Text] [Related]
20. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae. Guan R; Su J; Meng X; Li S; Liu Y; Xu J; Zhang S Plant Physiol; 2015 Sep; 169(1):299-312. PubMed ID: 26265775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]