These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27412788)

  • 1. Tunable dark plasmons in a metallic nanocube dimer: toward ultimate sensitivity nanoplasmonic sensors.
    Zhang S; Xu H
    Nanoscale; 2016 Jul; 8(28):13722-9. PubMed ID: 27412788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.
    Pellarin M; Ramade J; Rye JM; Bonnet C; Broyer M; Lebeault MA; Lermé J; Marguet S; Navarro JR; Cottancin E
    ACS Nano; 2016 Dec; 10(12):11266-11279. PubMed ID: 28024347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement.
    Li GC; Zhang YL; Jiang J; Luo Y; Lei DY
    ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multipolar Nanocube Plasmon Mode-Mixing in Finite Substrates.
    Cherqui C; Li G; Busche JA; Quillin SC; Camden JP; Masiello DJ
    J Phys Chem Lett; 2018 Feb; 9(3):504-512. PubMed ID: 29314843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
    Wang H
    Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.
    Ni H; Wang M; Shen T; Zhou J
    ACS Nano; 2015 Feb; 9(2):1913-25. PubMed ID: 25639937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New hybridization coupling mechanism and enhanced sensitivity in a Cu
    Cao P; Liang M; Wu Y; Li Y; Cheng L
    Nanotechnology; 2020 Sep; 31(36):365501. PubMed ID: 32443000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmon resonance spectroscopy of single silver nanocubes.
    Sherry LJ; Chang SH; Schatz GC; Van Duyne RP; Wiley BJ; Xia Y
    Nano Lett; 2005 Oct; 5(10):2034-8. PubMed ID: 16218733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range.
    Teng D; Wang K; Li Z; Zhao Y
    Opt Express; 2019 Apr; 27(9):12458-12469. PubMed ID: 31052785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations.
    Kvasnicka P; Homola J
    Biointerphases; 2008 Sep; 3(3):FD4-11. PubMed ID: 20408699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation of dark multipolar plasmonic resonances at terahertz frequencies.
    Chen L; Wei Y; Zang X; Zhu Y; Zhuang S
    Sci Rep; 2016 Feb; 6():22027. PubMed ID: 26903382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: a DDA simulation.
    Hooshmand N; O'Neil D; Asiri AM; El-Sayed M
    J Phys Chem A; 2014 Sep; 118(37):8338-44. PubMed ID: 24932838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double Fano resonances in individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Huang Z; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Jul; ():. PubMed ID: 28743841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ investigating the size-dependent scattering signatures and sensing sensitivity of single silver nanocube through a multi-model approach.
    Pan ZY; Zhou J; Zou HY; Li YF; Gao PF; Huang CZ
    J Colloid Interface Sci; 2021 Feb; 584():253-262. PubMed ID: 33069024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal.
    Gerislioglu B; Dong L; Ahmadivand A; Hu H; Nordlander P; Halas NJ
    Nano Lett; 2020 Mar; 20(3):2087-2093. PubMed ID: 31990568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Close-packed two-dimensional silver nanoparticle arrays: quadrupolar and dipolar surface plasmon resonance coupling.
    Yun S; Hong S; Acapulco JA; Jang HY; Ham S; Lee K; Kim SK; Park S
    Chemistry; 2015 Apr; 21(16):6165-72. PubMed ID: 25739448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres.
    Jiang N; Ruan Q; Qin F; Wang J; Lin HQ
    Nanoscale; 2015 Aug; 7(29):12516-26. PubMed ID: 26139347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers.
    Romero I; Aizpurua J; Bryant GW; García De Abajo FJ
    Opt Express; 2006 Oct; 14(21):9988-99. PubMed ID: 19529393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Second Harmonic Generation by Mode Matching in Gain-assisted Double-plasmonic Resonance Nanostructure.
    Pan GM; Yang DJ; Zhou L; Hao ZH; Wang QQ
    Sci Rep; 2017 Aug; 7(1):9776. PubMed ID: 28852097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double Fano resonances in an individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Zhong H; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Oct; 28(47):475203. PubMed ID: 29086757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.