These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27412858)

  • 1. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds.
    Padhorny D; Kazennov A; Zerbe BS; Porter KA; Xia B; Mottarella SE; Kholodov Y; Ritchie DW; Vajda S; Kozakov D
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4286-93. PubMed ID: 27412858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated CDOCKER with GPUs, Parallel Simulated Annealing, and Fast Fourier Transforms.
    Ding X; Wu Y; Wang Y; Vilseck JZ; Brooks CL
    J Chem Theory Comput; 2020 Jun; 16(6):3910-3919. PubMed ID: 32374996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions.
    Ritchie DW; Kozakov D; Vajda S
    Bioinformatics; 2008 Sep; 24(17):1865-73. PubMed ID: 18591193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance and Its Limits in Rigid Body Protein-Protein Docking.
    Desta IT; Porter KA; Xia B; Kozakov D; Vajda S
    Structure; 2020 Sep; 28(9):1071-1081.e3. PubMed ID: 32649857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New additions to the ClusPro server motivated by CAPRI.
    Vajda S; Yueh C; Beglov D; Bohnuud T; Mottarella SE; Xia B; Hall DR; Kozakov D
    Proteins; 2017 Mar; 85(3):435-444. PubMed ID: 27936493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focused grid-based resampling for protein docking and mapping.
    Mamonov AB; Moghadasi M; Mirzaei H; Zarbafian S; Grove LE; Bohnuud T; Vakili P; Ch Paschalidis I; Vajda S; Kozakov D
    J Comput Chem; 2016 Apr; 37(11):961-70. PubMed ID: 26837000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein docking by Rotation-Based Uniform Sampling (RotBUS) with fast computing of intermolecular contact distance and residue desolvation.
    Solernou A; Fernandez-Recio J
    BMC Bioinformatics; 2010 Jun; 11():352. PubMed ID: 20584304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of near-native structures by clustering protein docking conformations.
    Lorenzen S; Zhang Y
    Proteins; 2007 Jul; 68(1):187-94. PubMed ID: 17397057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scoring docked conformations generated by rigid-body protein-protein docking.
    Camacho CJ; Gatchell DW; Kimura SR; Vajda S
    Proteins; 2000 Aug; 40(3):525-37. PubMed ID: 10861944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution fast quantitative docking using Fourier domain correlation techniques.
    Blom NS; Sygusch J
    Proteins; 1997 Apr; 27(4):493-506. PubMed ID: 9141130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CDOCKER and λ-dynamics for prospective prediction in D₃R Grand Challenge 2.
    Ding X; Hayes RL; Vilseck JZ; Charles MK; Brooks CL
    J Comput Aided Mol Des; 2018 Jan; 32(1):89-102. PubMed ID: 28884249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Minimization on Manifolds for Docking Flexible Molecules.
    Mirzaei H; Zarbafian S; Villar E; Mottarella S; Beglov D; Vajda S; Paschalidis ICh; Vakili P; Kozakov D
    J Chem Theory Comput; 2015 Mar; 11(3):1063-76. PubMed ID: 26478722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClusPro FMFT-SAXS: Ultra-fast Filtering Using Small-Angle X-ray Scattering Data in Protein Docking.
    Ignatov M; Kazennov A; Kozakov D
    J Mol Biol; 2018 Jul; 430(15):2249-2255. PubMed ID: 29626538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT.
    Porter KA; Xia B; Beglov D; Bohnuud T; Alam N; Schueler-Furman O; Kozakov D
    Bioinformatics; 2017 Oct; 33(20):3299-3301. PubMed ID: 28430871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized grid-based protein-protein docking as a global search tool followed by incorporating experimentally derivable restraints.
    Huang W; Liu H
    Proteins; 2012 Mar; 80(3):691-702. PubMed ID: 22190391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.
    Neveu E; Ritchie DW; Popov P; Grudinin S
    Bioinformatics; 2016 Sep; 32(17):i693-i701. PubMed ID: 27587691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CoDockPP: A Multistage Approach for Global and Site-Specific Protein-Protein Docking.
    Kong R; Wang F; Zhang J; Wang F; Chang S
    J Chem Inf Model; 2019 Aug; 59(8):3556-3564. PubMed ID: 31276391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.