BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27414766)

  • 21. Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations.
    Koelsch M; Mallak R; Graham GG; Kajer T; Milligan MK; Nguyen LQ; Newsham DW; Keh JS; Kettle AJ; Scott KF; Ziegler JB; Pattison DI; Fu S; Hawkins CL; Rees MD; Davies MJ
    Biochem Pharmacol; 2010 Apr; 79(8):1156-64. PubMed ID: 19968966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of nitrite oxidation by eosinophil peroxidase: implications for oxidant production and nitration by eosinophils.
    van Dalen CJ; Winterbourn CC; Kettle AJ
    Biochem J; 2006 Mar; 394(Pt 3):707-13. PubMed ID: 16336215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The mechanism of bactericidal activity in phagosomes of neutrophils].
    Murav'ev RA; But PG; Fomina VA; Rogovin VV
    Izv Akad Nauk Ser Biol; 2002; (4):437-41. PubMed ID: 12180008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superoxide: The enigmatic chemical chameleon in neutrophil biology.
    Kettle AJ; Ashby LV; Winterbourn CC; Dickerhof N
    Immunol Rev; 2023 Mar; 314(1):181-196. PubMed ID: 36609987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation.
    Hazen SL; Hsu FF; d'Avignon A; Heinecke JW
    Biochemistry; 1998 May; 37(19):6864-73. PubMed ID: 9578573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neutrophil-induced depletion of adenosine triphosphate in target cells: evidence for a hypochlorous acid-mediated process.
    Dallegri F; Goretti R; Ballestrero A; Ottonello L; Patrone F
    J Lab Clin Med; 1988 Dec; 112(6):765-72. PubMed ID: 2848084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change.
    Gorudko IV; Grigorieva DV; Shamova EV; Kostevich VA; Sokolov AV; Mikhalchik EV; Cherenkevich SN; Arnhold J; Panasenko OM
    Free Radic Biol Med; 2014 Mar; 68():326-34. PubMed ID: 24384524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants.
    Kruidenier L; Kuiper I; Lamers CB; Verspaget HW
    J Pathol; 2003 Sep; 201(1):28-36. PubMed ID: 12950014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inactivation of neutrophil-derived hypochlorous acid by nimesulide: a potential mechanism for the tissue protection during inflammation.
    Dallegri F; Patrone F; Ballestrero A; Ottonello L; Ferrando F; Sacchetti C
    Int J Tissue React; 1990; 12(2):107-11. PubMed ID: 2170285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing.
    Green JN; Kettle AJ; Winterbourn CC
    Free Radic Biol Med; 2014 Dec; 77():49-56. PubMed ID: 25236747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox reactions and microbial killing in the neutrophil phagosome.
    Winterbourn CC; Kettle AJ
    Antioxid Redox Signal; 2013 Feb; 18(6):642-60. PubMed ID: 22881869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myeloperoxidase: the yin and yang in tumour progression.
    Mika D; Guruvayoorappan C
    J Exp Ther Oncol; 2011; 9(2):93-100. PubMed ID: 21699016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isoniazid as a substrate and inhibitor of myeloperoxidase: identification of amine adducts and the influence of superoxide dismutase on their formation.
    Forbes LV; Furtmüller PG; Khalilova I; Turner R; Obinger C; Kettle AJ
    Biochem Pharmacol; 2012 Oct; 84(7):949-60. PubMed ID: 22846601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.
    Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase.
    Chapman AL; Mocatta TJ; Shiva S; Seidel A; Chen B; Khalilova I; Paumann-Page ME; Jameson GN; Winterbourn CC; Kettle AJ
    J Biol Chem; 2013 Mar; 288(9):6465-77. PubMed ID: 23306200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutrophil myeloperoxidase and its substrates: formation of specific markers and reactive compounds during inflammation.
    Kato Y
    J Clin Biochem Nutr; 2016 Mar; 58(2):99-104. PubMed ID: 27013775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design.
    Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Lehner I; Jakopitsch C; Arnhold J; Obinger C
    Biochem Pharmacol; 2005 Apr; 69(8):1149-57. PubMed ID: 15794935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.
    Vlasova II; Vakhrusheva TV; Sokolov AV; Kostevich VA; Gusev AA; Gusev SA; Melnikova VI; Lobach AS
    Toxicol Appl Pharmacol; 2012 Oct; 264(1):131-42. PubMed ID: 22884993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The physiological role and pharmacological potential of nitric oxide in neutrophil activation.
    Armstrong R
    Int Immunopharmacol; 2001 Aug; 1(8):1501-12. PubMed ID: 11515815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems.
    Huang J; Milton A; Arnold RD; Huang H; Smith F; Panizzi JR; Panizzi P
    J Leukoc Biol; 2016 Apr; 99(4):541-8. PubMed ID: 26884610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.