These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27414977)

  • 1. Dynamics of Electron Injection in SnO2/TiO2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells.
    McCool NS; Swierk JR; Nemes CT; Schmuttenmaer CA; Mallouk TE
    J Phys Chem Lett; 2016 Aug; 7(15):2930-4. PubMed ID: 27414977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Recombination Dynamics in Dye-Sensitized SnO
    Gish MK; Lapides AM; Brennaman MK; Templeton JL; Meyer TJ; Papanikolas JM
    J Phys Chem Lett; 2016 Dec; 7(24):5297-5301. PubMed ID: 27973875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells.
    McCool NS; Swierk JR; Nemes CT; Saunders TP; Schmuttenmaer CA; Mallouk TE
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16727-35. PubMed ID: 27295276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending charge separation lifetime and distance in patterned dye-sensitized SnO
    Saavedra Becerril V; Sundin E; Mapar M; Abrahamsson M
    Phys Chem Chem Phys; 2017 Aug; 19(34):22684-22690. PubMed ID: 28812752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell.
    Alibabaei L; Sherman BD; Norris MR; Brennaman MK; Meyer TJ
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5899-902. PubMed ID: 25918426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electron trapping and protonation on the efficiency of water-splitting dye-sensitized solar cells.
    Swierk JR; McCool NS; Saunders TP; Barber GD; Mallouk TE
    J Am Chem Soc; 2014 Aug; 136(31):10974-82. PubMed ID: 25068176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer kinetics in water splitting dye-sensitized solar cells based on core-shell oxide electrodes.
    Lee SH; Zhao Y; Hernandez-Pagan EA; Blasdel L; Youngblood WJ; Mallouk TE
    Faraday Discuss; 2012; 155():165-76; discussion 207-22. PubMed ID: 22470973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Recombination with Fractional Reaction Orders in Water-Splitting Dye-Sensitized Photoelectrochemical Cells.
    Xu P; Gray CL; Xiao L; Mallouk TE
    J Am Chem Soc; 2018 Sep; 140(37):11647-11654. PubMed ID: 30145888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-sensitized solar cells employing a SnO2-TiO2 core-shell structure made by atomic layer deposition.
    Karlsson M; Jõgi I; Eriksson SK; Rensmo H; Boman M; Boschloo G; Hagfeldt A
    Chimia (Aarau); 2013; 67(3):142-8. PubMed ID: 23574953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting.
    Gun Y; Song GY; Quy VH; Heo J; Lee H; Ahn KS; Kang SH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20292-303. PubMed ID: 26322646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast proton-assisted tunneling through ZrO
    Swierk JR; McCool NS; Röhr JA; Hedström S; Konezny SJ; Nemes CT; Xu P; Batista VS; Mallouk TE; Schmuttenmaer CA
    Chem Commun (Camb); 2018 Jul; 54(57):7971-7974. PubMed ID: 29961797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores.
    Park NG; Kang MG; Kim KM; Ryu KS; Chang SH; Kim DK; van de Lagemaat J; Benkstein KD; Frank AJ
    Langmuir; 2004 May; 20(10):4246-53. PubMed ID: 15969424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissymmetric interface design of SnO
    Wei K; Gu XY; Chen EZ; Wang YQ; Dai Z; Zhu ZR; Kang SQ; Wang AC; Gao XP; Sun GZ; Pan XJ; Zhou JY; Xie EQ
    J Colloid Interface Sci; 2021 Feb; 583():24-32. PubMed ID: 32971502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced electron transfer from quantum dots to TiO2: elucidating the involvement of excitonic and surface states.
    Chauhan S; Watson DF
    Phys Chem Chem Phys; 2016 Jul; 18(30):20466-75. PubMed ID: 27401207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inner Layer Control of Performance in a Dye-Sensitized Photoelectrosynthesis Cell.
    Wang D; Farnum BH; Sheridan MV; Marquard SL; Sherman BD; Meyer TJ
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33533-33538. PubMed ID: 28244735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the assessment of incorporation of CNT-TiO
    Ghartavol HM; Mohammadi MR; Afshar A; Li Y
    Photochem Photobiol Sci; 2019 Jul; 18(7):1840-1850. PubMed ID: 31204420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films.
    Green AN; Palomares E; Haque SA; Kroon JM; Durrant JR
    J Phys Chem B; 2005 Jun; 109(25):12525-33. PubMed ID: 16852549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting.
    Li JM; Cheng HY; Chiu YH; Hsu YJ
    Nanoscale; 2016 Aug; 8(34):15720-9. PubMed ID: 27527337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.
    Maity P; Debnath T; Chopra U; Ghosh HN
    Nanoscale; 2015 Feb; 7(6):2698-707. PubMed ID: 25583154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barriers for interfacial back-electron transfer: A comparison between TiO
    Troian-Gautier L; Sampaio RN; Piechota EJ; Brady MD; Meyer GJ
    J Chem Phys; 2019 Jan; 150(4):041719. PubMed ID: 30709314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.