These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27415187)

  • 1. General continuum approach for dissipative systems of repulsive particles.
    Vieira CM; Carmona HA; Andrade JS; Moreira AA
    Phys Rev E; 2016 Jun; 93(6):060103. PubMed ID: 27415187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended phase-space dynamics for the generalized nonextensive thermostatistics.
    Andrade JS; Almeida MP; Moreira AA; Farias GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036121. PubMed ID: 11909179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foundations of dissipative particle dynamics.
    Flekkoy EG; Coveney PV; De Fabritiis G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2140-57. PubMed ID: 11088680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag.
    Plastino AR; Curado EMF; Nobre FD; Tsallis C
    Phys Rev E; 2018 Feb; 97(2-1):022120. PubMed ID: 29548132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear Fokker-Planck Equation Approach to Systems of Interacting Particles: Thermostatistical Features Related to the Range of the Interactions.
    Plastino AR; Wedemann RS
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics.
    Yoshimoto Y; Kinefuchi I; Mima T; Fukushima A; Tokumasu T; Takagi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043305. PubMed ID: 24229302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostatistics of overdamped motion of interacting particles.
    Andrade JS; da Silva GF; Moreira AA; Nobre FD; Curado EM
    Phys Rev Lett; 2010 Dec; 105(26):260601. PubMed ID: 21231636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-liquid equilibria for soft-repulsive particles: improved equation of state and methodology for representing molecules of different sizes and chemistry in dissipative particle dynamics.
    Liyana-Arachchi TP; Jamadagni SN; Eike D; Koenig PH; Siepmann JI
    J Chem Phys; 2015 Jan; 142(4):044902. PubMed ID: 25638004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale.
    McCarty J; Clark AJ; Copperman J; Guenza MG
    J Chem Phys; 2014 May; 140(20):204913. PubMed ID: 24880331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invariance of experimental observables with respect to coarse-graining in standard and many-body dissipative particle dynamics.
    Vanya P; Sharman J; Elliott JA
    J Chem Phys; 2019 Feb; 150(6):064101. PubMed ID: 30770006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems.
    Pivkin IV; Karniadakis GE
    J Chem Phys; 2006 May; 124(18):184101. PubMed ID: 16709091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Metropolis dynamics with a generalized master equation: an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems.
    da Silva R; Drugowich de Felício JR; Martinez AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066707. PubMed ID: 23005243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical dynamics of driven systems of confined interacting particles in the overdamped-motion regime.
    Curilef S; Plastino AR; Wedemann RS
    Chaos; 2022 Nov; 32(11):113134. PubMed ID: 36456338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for estimating the interactions in dissipative particle dynamics from particle trajectories.
    Eriksson A; Jacobi MN; Nyström J; Tunstrøm K
    J Phys Condens Matter; 2009 Mar; 21(9):095401. PubMed ID: 21817387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale coarse-graining of non-conservative interactions in molecular liquids.
    Izvekov S; Rice BM
    J Chem Phys; 2014 Mar; 140(10):104104. PubMed ID: 24628149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation.
    Li Z; Bian X; Caswell B; Karniadakis GE
    Soft Matter; 2014 Nov; 10(43):8659-72. PubMed ID: 25252001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics.
    Petsev ND; Leal LG; Shell MS
    J Chem Phys; 2016 Feb; 144(8):084115. PubMed ID: 26931689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-bottom-up coarse graining of water based on microscopic simulations.
    Gao L; Fang W
    J Chem Phys; 2011 Nov; 135(18):184101. PubMed ID: 22088046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravitational dynamics of an infinite shuffled lattice: Particle coarse-graining, nonlinear clustering, and the continuum limit.
    Baertschiger T; Joyce M; Gabrielli A; Sylos Labini F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011116. PubMed ID: 17677419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method.
    Satoh A; Majima T
    J Colloid Interface Sci; 2005 Mar; 283(1):251-66. PubMed ID: 15694446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.