These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 27415201)
1. Minimal energy ensemble Monte Carlo algorithm for the partition function of fermions coupled to classical fields. Grzybowski PR; Czekaj Ł; Nogala M; Ścibior A; Chhajlany RW Phys Rev E; 2016 Jun; 93(6):061301. PubMed ID: 27415201 [TBL] [Abstract][Full Text] [Related]
2. Green-function-based monte carlo method for classical fields coupled to fermions. Weisse A Phys Rev Lett; 2009 Apr; 102(15):150604. PubMed ID: 19518613 [TBL] [Abstract][Full Text] [Related]
3. Path-integral-expanded-ensemble Monte Carlo method in treatment of the sign problem for fermions. Voznesenskiy MA; Vorontsov-Velyaminov PN; Lyubartsev AP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066702. PubMed ID: 20365297 [TBL] [Abstract][Full Text] [Related]
4. Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions. Wang Z; Assaad FF; Parisen Toldin F Phys Rev E; 2017 Oct; 96(4-1):042131. PubMed ID: 29347588 [TBL] [Abstract][Full Text] [Related]
5. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Wang F; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056101. PubMed ID: 11736008 [TBL] [Abstract][Full Text] [Related]
6. Overcoming the slowing down of flat-histogram Monte Carlo simulations: cluster updates and optimized broad-histogram ensembles. Wu Y; Körner M; Colonna-Romano L; Trebst S; Gould H; Machta J; Troyer M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046704. PubMed ID: 16383564 [TBL] [Abstract][Full Text] [Related]
7. Hofstadter butterfly in the Falicov-Kimball model on some finite 2D lattices. Pradhan S J Phys Condens Matter; 2016 Dec; 28(50):505502. PubMed ID: 27768603 [TBL] [Abstract][Full Text] [Related]
8. Multicanonical Monte Carlo ensemble growth algorithm. Vernizzi G; Nguyen TD; Orland H; Olvera de la Cruz M Phys Rev E; 2020 Feb; 101(2-1):021301. PubMed ID: 32168705 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo algorithm for free energy calculation. Bi S; Tong NH Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013310. PubMed ID: 26274310 [TBL] [Abstract][Full Text] [Related]
10. Comparative Monte Carlo efficiency by Monte Carlo analysis. Rubenstein BM; Gubernatis JE; Doll JD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207 [TBL] [Abstract][Full Text] [Related]
11. Path integral molecular dynamics for fermions: Alleviating the sign problem with the Bogoliubov inequality. Hirshberg B; Invernizzi M; Parrinello M J Chem Phys; 2020 May; 152(17):171102. PubMed ID: 32384858 [TBL] [Abstract][Full Text] [Related]
12. Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations. Trebst S; Huse DA; Troyer M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046701. PubMed ID: 15600559 [TBL] [Abstract][Full Text] [Related]
13. Nested sampling in the canonical ensemble: direct calculation of the partition function from NVT trajectories. Nielsen SO J Chem Phys; 2013 Sep; 139(12):124104. PubMed ID: 24089747 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of fermions at any temperature based on parametrized partition function. Xiong Y; Xiong H Phys Rev E; 2023 May; 107(5-2):055308. PubMed ID: 37329051 [TBL] [Abstract][Full Text] [Related]
15. Determination of the conformal-field-theory central charge by the Wang-Landau algorithm. Belov PA; Nazarov AA; Sorokin AO Phys Rev E; 2017 Jun; 95(6-1):063308. PubMed ID: 28709307 [TBL] [Abstract][Full Text] [Related]
16. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination. Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo framework for noncontinuous interactions between particles and classical fields. Wesp C; van Hees H; Meistrenko A; Greiner C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043302. PubMed ID: 25974607 [TBL] [Abstract][Full Text] [Related]
18. Worm algorithm and diagrammatic Monte Carlo: a new approach to continuous-space path integral Monte Carlo simulations. Boninsegni M; Prokof'ev NV; Svistunov BV Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036701. PubMed ID: 17025780 [TBL] [Abstract][Full Text] [Related]
19. Quantum monte carlo algorithm based on two-body density functional theory for fermionic many-body systems: application to 3He. Hetényi B; Brualla L; Fantoni S Phys Rev Lett; 2004 Oct; 93(17):170202. PubMed ID: 15525051 [TBL] [Abstract][Full Text] [Related]
20. Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos. Bertini B; Kos P; Prosen T Phys Rev Lett; 2018 Dec; 121(26):264101. PubMed ID: 30636114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]