BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27415255)

  • 1. Localized stationary and traveling reaction-diffusion patterns in a two-layer A+B→ oscillator system.
    Budroni MA; De Wit A
    Phys Rev E; 2016 Jun; 93(6):062207. PubMed ID: 27415255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns.
    Budroni MA; De Wit A
    Chaos; 2017 Oct; 27(10):104617. PubMed ID: 29092422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially Localized Chemical Patterns around an A + B → Oscillator Front.
    Budroni MA; Lemaigre L; Escala DM; Muñuzuri AP; De Wit A
    J Phys Chem A; 2016 Feb; 120(6):851-60. PubMed ID: 26725730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction-driven oscillating viscous fingering.
    Rana C; De Wit A
    Chaos; 2019 Apr; 29(4):043115. PubMed ID: 31042958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
    Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buoyancy-Driven Chemohydrodynamic Patterns in A + B → Oscillator Two-Layer Stratifications.
    Budroni MA; Lemaigre L; Escala DM; Wit A
    Langmuir; 2023 Jan; 39(3):997-1009. PubMed ID: 36623172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal chaos stimulated by transverse Hopf instabilities in an optical bilayer system.
    Paulau PV; Babushkin IV; Loiko NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046222. PubMed ID: 15600510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable squares and other oscillatory turing patterns in a reaction-diffusion model.
    Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.
    Escala DM; Budroni MA; Carballido-Landeira J; De Wit A; Muñuzuri AP
    J Phys Chem Lett; 2014 Feb; 5(3):413-8. PubMed ID: 26276584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic and entropic cost due to overlapping of Turing-Hopf instabilities in the presence of cross diffusion.
    Kumar P; Gangopadhyay G
    Phys Rev E; 2020 Apr; 101(4-1):042204. PubMed ID: 32422772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system.
    Just W; Bose M; Bose S; Engel H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of Turing patterns under spatiotemporal forcing.
    Rüdiger S; Míguez DG; Muñuzuri AP; Sagués F; Casademunt J
    Phys Rev Lett; 2003 Mar; 90(12):128301. PubMed ID: 12688908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turing pattern formation in fractional activator-inhibitor systems.
    Henry BI; Langlands TA; Wearne SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-delay-induced instabilities in reaction-diffusion systems.
    Sen S; Ghosh P; Riaz SS; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046212. PubMed ID: 19905420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soliton behaviour in a bistable reaction diffusion model.
    Varea C; Hernández D; Barrio RA
    J Math Biol; 2007 Jun; 54(6):797-813. PubMed ID: 17530255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model.
    Banerjee M; Banerjee S
    Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drifting pattern domains in a reaction-diffusion system with nonlocal coupling.
    Nicola EM; Or-Guil M; Wolf W; Bär M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):055101. PubMed ID: 12059625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turing pattern formation in the Brusselator system with nonlinear diffusion.
    Gambino G; Lombardo MC; Sammartino M; Sciacca V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system.
    Ghosh P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016222. PubMed ID: 21867288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions.
    Alonso S; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.